Distance Aware Compression for Low Latency High Bandwidth Interconnection Network

Yuqing Zhou, Naoya Niwa, H. Amano
{"title":"Distance Aware Compression for Low Latency High Bandwidth Interconnection Network","authors":"Yuqing Zhou, Naoya Niwa, H. Amano","doi":"10.1109/MCSoC57363.2022.00063","DOIUrl":null,"url":null,"abstract":"NoC(Network-on-Chip)s is an essential component of recent multi-core systems. When the number of wires available on a chip is limited, it is sometimes congested and increased la-tency can degrade the parallel application performance. The selective data compression has been proposed to mitigate such network congestion by compressing and decompressing packets based on the packet length and traffic situation. However, since the algorithm does not care the location of nodes, the compression and decompression are performed even when the packet is transferred between neighboring nodes. This paper proposes a distance aware (DA) compression mechanism to select whether the packet should be compressed by the distance to the destination. The packets to the nodes whose distance is larger than threshold level are compressed with a run-length loss-less compression at the sender's network interface and de-compressed at the receiver's network interface. Cycle level network simulation results show that the selective compression method achieves up to 45% bandwidth improve-ment with 1.26 times increase of the latency.","PeriodicalId":150801,"journal":{"name":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC57363.2022.00063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

NoC(Network-on-Chip)s is an essential component of recent multi-core systems. When the number of wires available on a chip is limited, it is sometimes congested and increased la-tency can degrade the parallel application performance. The selective data compression has been proposed to mitigate such network congestion by compressing and decompressing packets based on the packet length and traffic situation. However, since the algorithm does not care the location of nodes, the compression and decompression are performed even when the packet is transferred between neighboring nodes. This paper proposes a distance aware (DA) compression mechanism to select whether the packet should be compressed by the distance to the destination. The packets to the nodes whose distance is larger than threshold level are compressed with a run-length loss-less compression at the sender's network interface and de-compressed at the receiver's network interface. Cycle level network simulation results show that the selective compression method achieves up to 45% bandwidth improve-ment with 1.26 times increase of the latency.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低延迟高带宽互连网络的距离感知压缩
片上网络是当今多核系统的重要组成部分。当芯片上可用的线路数量有限时,有时会出现拥塞,并且延迟的增加会降低并行应用程序的性能。为了缓解这种网络拥塞,提出了选择性数据压缩,根据数据包长度和流量情况对数据包进行压缩和解压缩。但是,由于该算法不关心节点的位置,因此即使在相邻节点之间传输数据包也会进行压缩和解压缩。本文提出了一种距离感知(DA)压缩机制来选择数据包是否应该根据到目的地的距离进行压缩。对于发送到距离大于阈值的节点的数据包,在发送方的网络接口进行运行长度无损压缩,在接收方的网络接口进行解压缩。周期级网络仿真结果表明,选择性压缩方法的带宽提高了45%,延迟提高了1.26倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driver Status Monitoring System with Feedback from Fatigue Detection and Lane Line Detection Efficient and High-Performance Sparse Matrix-Vector Multiplication on a Many-Core Array Impact of Programming Language Skills in Programming Learning Composite Lightweight Authenticated Encryption Based on LED Block Cipher and PHOTON Hash Function for IoT Devices Message from the Chairs: Welcome to the 2022 IEEE 15th International Symposium on embedded Multicore/Many-core Systems-on-Chip (IEEE MCSoC-2022)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1