Incremental Learning of Relational Action Rules

Christophe Rodrigues, Pierre Gérard, C. Rouveirol, H. Soldano
{"title":"Incremental Learning of Relational Action Rules","authors":"Christophe Rodrigues, Pierre Gérard, C. Rouveirol, H. Soldano","doi":"10.1109/ICMLA.2010.73","DOIUrl":null,"url":null,"abstract":"In the Relational Reinforcement learning framework, we propose an algorithm that learns an action model allowing to predict the resulting state of each action in any given situation. The system incrementally learns a set of first order rules: each time an example contradicting the current model (a counter-example) is encountered, the model is revised to preserve coherence and completeness, by using data-driven generalization and specialization mechanisms. The system is proved to converge by storing counter-examples only, and experiments on RRL benchmarks demonstrate its good performance w.r.t state of the art RRL systems.","PeriodicalId":336514,"journal":{"name":"2010 Ninth International Conference on Machine Learning and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Ninth International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2010.73","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In the Relational Reinforcement learning framework, we propose an algorithm that learns an action model allowing to predict the resulting state of each action in any given situation. The system incrementally learns a set of first order rules: each time an example contradicting the current model (a counter-example) is encountered, the model is revised to preserve coherence and completeness, by using data-driven generalization and specialization mechanisms. The system is proved to converge by storing counter-examples only, and experiments on RRL benchmarks demonstrate its good performance w.r.t state of the art RRL systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关系型动作规则的增量学习
在关系强化学习框架中,我们提出了一种算法,该算法学习一个动作模型,允许在任何给定情况下预测每个动作的结果状态。系统逐渐学习一组一阶规则:每次遇到与当前模型相矛盾的例子(反例)时,通过使用数据驱动的泛化和专门化机制,对模型进行修订以保持一致性和完整性。通过仅存储反例证明了该系统的收敛性,并在RRL基准测试上进行了实验,证明了该系统在现有RRL系统中具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative Analysis of DNA Microarray Data through the Use of Feature Selection Techniques Learning from Multiple Related Data Streams with Asynchronous Flowing Speeds Bayesian Inferences and Forecasting in Spatial Time Series Models A Framework for Comprehensive Electronic QA in Radiation Therapy Model-Based Co-clustering for Continuous Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1