Red edge point detection for mulberry leaf

K. Bhosle, V. Musande
{"title":"Red edge point detection for mulberry leaf","authors":"K. Bhosle, V. Musande","doi":"10.1109/ICISIM.2017.8122160","DOIUrl":null,"url":null,"abstract":"Red Edge point (R E P) is very much related with chlorophyll foliar concentration and contents. Deep absorption of chlorophyll a and chlorophyll b affects the sudden change in region starting from 680 nm to 800 nm of green vegetation reflectance spectrum. Greenness area of the observation can be recognized by Red Edge Point. The Vegetation which is given by remote sensing methods consist of Red Edge Point in spectrum. REP also can be observed using lab or field experiments. In which canopy spectral reflectance were obtained with an A S D Field Spec PRO spectro radiometer that provides measurements in the spectral range starting from 350 nm to 2500 nm with 3 nm spectral resolutions and 1 nm sampling step. These experimental results can be used to identify different crops. Unhealthy crops can be found using remote sensing data. Spectro radiometer gives us refraction and reflection same as of remote sensing data. This can be possible if we can found Red Edge Point. Dryness of plants are detected using this technique. Current work in this paper consist of finding stress of mulberry, cotton and sugarcane plants estimating result using peak derivative, linear interpolation, linear extrapolation method. Finally result is compared using above all methods.","PeriodicalId":139000,"journal":{"name":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 1st International Conference on Intelligent Systems and Information Management (ICISIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISIM.2017.8122160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Red Edge point (R E P) is very much related with chlorophyll foliar concentration and contents. Deep absorption of chlorophyll a and chlorophyll b affects the sudden change in region starting from 680 nm to 800 nm of green vegetation reflectance spectrum. Greenness area of the observation can be recognized by Red Edge Point. The Vegetation which is given by remote sensing methods consist of Red Edge Point in spectrum. REP also can be observed using lab or field experiments. In which canopy spectral reflectance were obtained with an A S D Field Spec PRO spectro radiometer that provides measurements in the spectral range starting from 350 nm to 2500 nm with 3 nm spectral resolutions and 1 nm sampling step. These experimental results can be used to identify different crops. Unhealthy crops can be found using remote sensing data. Spectro radiometer gives us refraction and reflection same as of remote sensing data. This can be possible if we can found Red Edge Point. Dryness of plants are detected using this technique. Current work in this paper consist of finding stress of mulberry, cotton and sugarcane plants estimating result using peak derivative, linear interpolation, linear extrapolation method. Finally result is compared using above all methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
桑叶红色边缘点检测
红边点(rep)与叶片叶绿素浓度和含量密切相关。叶绿素a和叶绿素b的深度吸收影响绿色植被反射光谱从680 nm到800 nm区域的突变。观测的绿色区域可以通过红边缘点来识别。遥感方法给出的植被由光谱中的红边缘点组成。REP也可以通过实验室或现场实验来观察。其中,冠层的光谱反射率是用A S D Field Spec PRO光谱仪获得的,该光谱仪在350 nm至2500 nm的光谱范围内测量,光谱分辨率为3 nm,采样步长为1 nm。这些实验结果可以用来识别不同的作物。利用遥感数据可以发现不健康的作物。光谱仪给我们的折射和反射与遥感数据相同。如果我们能找到红边点,这是可能的。利用这种技术可以检测植物的干燥程度。本文的研究工作主要包括桑树、棉花和甘蔗等植物的应力分布,采用峰值导数法、线性插值法、线性外推法估算结果。最后用以上几种方法对结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid technique for splice site prediction Information fusion for images on FPGA: Pixel level with pseudo color Hierarchical document clustering based on cosine similarity measure Embedded home surveillance system with pyroelectric infrared sensor using GSM Healthcare data modeling in R
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1