Neural network systems for estimating the initial condition in a heat conduction problem

E. H. Shiguemori, J.D. Simoes de Silva, H.F. Campos-Velho
{"title":"Neural network systems for estimating the initial condition in a heat conduction problem","authors":"E. H. Shiguemori, J.D. Simoes de Silva, H.F. Campos-Velho","doi":"10.1109/IJCNN.2002.1007663","DOIUrl":null,"url":null,"abstract":"This paper describes a neural network approach to the inverse problem of determining the initial temperature distribution on a slab with adiabatic boundary conditions, from transient temperature distribution, obtained at a given time. Two neural network architectures have been proposed to address the problem: the multilayer perceptron with backpropagation and radial basis functions (RBF), both trained with the whole temperature history mapping. The conducted simulations showed RBF networks present better solutions, faster training, but higher noise sensitiveness, as compared to the multilayer perceptron with backpropagation.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a neural network approach to the inverse problem of determining the initial temperature distribution on a slab with adiabatic boundary conditions, from transient temperature distribution, obtained at a given time. Two neural network architectures have been proposed to address the problem: the multilayer perceptron with backpropagation and radial basis functions (RBF), both trained with the whole temperature history mapping. The conducted simulations showed RBF networks present better solutions, faster training, but higher noise sensitiveness, as compared to the multilayer perceptron with backpropagation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
估计热传导问题初始条件的神经网络系统
本文描述了用神经网络方法求解具有绝热边界条件的板的初始温度分布的反问题,该反问题是由给定时间的瞬态温度分布确定的。为了解决这个问题,提出了两种神经网络结构:带反向传播的多层感知器和径向基函数(RBF),它们都是用整个温度历史映射来训练的。所进行的模拟表明,与反向传播的多层感知器相比,RBF网络提供了更好的解决方案,更快的训练,但更高的噪声灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1