The Improvement of Simulated Annealing Algorithm on the Penalty Function in Multi-agent Traveling Salesman Problem

Tianchen Ren, Jiayi Yang, Jinxin Li
{"title":"The Improvement of Simulated Annealing Algorithm on the Penalty Function in Multi-agent Traveling Salesman Problem","authors":"Tianchen Ren, Jiayi Yang, Jinxin Li","doi":"10.1145/3501774.3501795","DOIUrl":null,"url":null,"abstract":"To solve the MTSP and discover the efficiency of different methods, this paper compares Monte Carlo with Simulating Annealing Algorithm by testing them in three sizes of map samples from small to large. The Monte Carlo can just solve the simple TSP problems and become useless due to its time and space complexity when the number of cities goes large. Therefore, we adopt a heuristic algorithm, Simulated Annealing. The Simulated Annealing Algorithm can solve the MTSP, although it is not the most optimal path, especially when an agent faces a group of clustered cities. To get a better result, this paper describes how to alternate the penalty function to set some limitations in the SAA and provide a better way to solve the MTSP when facing clustered group locations, which helps optimize the path in practice","PeriodicalId":255059,"journal":{"name":"Proceedings of the 2021 European Symposium on Software Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 European Symposium on Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3501774.3501795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To solve the MTSP and discover the efficiency of different methods, this paper compares Monte Carlo with Simulating Annealing Algorithm by testing them in three sizes of map samples from small to large. The Monte Carlo can just solve the simple TSP problems and become useless due to its time and space complexity when the number of cities goes large. Therefore, we adopt a heuristic algorithm, Simulated Annealing. The Simulated Annealing Algorithm can solve the MTSP, although it is not the most optimal path, especially when an agent faces a group of clustered cities. To get a better result, this paper describes how to alternate the penalty function to set some limitations in the SAA and provide a better way to solve the MTSP when facing clustered group locations, which helps optimize the path in practice
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多智能体旅行商问题惩罚函数模拟退火算法的改进
为了解决MTSP问题并发现不同方法的效率,本文通过在从小到大的三种地图样本中对蒙特卡罗算法和模拟退火算法进行了比较。蒙特卡罗算法只能解决简单的TSP问题,当城市数量变大时,由于时间和空间的复杂性,蒙特卡罗算法变得无用。因此,我们采用了一种启发式算法——模拟退火。模拟退火算法可以解决MTSP问题,尽管它不是最优路径,特别是当智能体面对一组聚集的城市时。为了获得更好的结果,本文描述了如何在SAA中替换惩罚函数来设置一些限制,并提供了一种更好的方法来解决面对集群群位置时的MTSP,这有助于在实践中优化路径
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Customer Satisfaction in Software Development Projects A Lightweight Development of Outbreak Prevention Strategies Built on Formal Methods and xDSLs An Exploratory Teaching Proposal of Greek History Independence Events based on STEAM Epistemology, Educational Robotics and Smart Learning Technologies Merging Live Video Feeds for Remote Monitoring of a Mining Machine Incorporating energy efficiency measurement into CI\CD pipeline
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1