Gist and Verbatim in Narrative Memory

David A. Broniatowski, V. Reyna
{"title":"Gist and Verbatim in Narrative Memory","authors":"David A. Broniatowski, V. Reyna","doi":"10.4230/OASIcs.CMN.2013.43","DOIUrl":null,"url":null,"abstract":"A major concern regarding the study of narratives regards how they are indexed and retrieved. This is a question which touches on the structure of human memory in general. Indeed, if narratives capture the substance of human thought, then data that we have already collected regarding human memory is of central importance to the computational study of narrative. Fuzzy Trace Theory assumes that memory for narrative is simultaneously stored at multiple levels of abstraction and, whenever possible, decision-makers interpret a stimulus qualitatively and therefore operate on a simple - typically categorical - \"gist\" representation. Here, we present a computational model of Fuzzy Trace Theory applied to explain the impact of changes in a narrative upon risky-choice framing effects. Overall, our theory predicts the outcome of 20 experimental effects using only three basic assumptions: 1) preference for lowest level of gist, that is, categorical processing; 2) decision options that fall within the same categorical description are then interpreted using finer-grained (ordinal or verbatim) distinctions; and 3) once the options are mentally represented, decision preferences are generated on the basis of simple positive vs. negative valences stored in long-term memory (e.g., positive value for human lives). A fourth assumption - that negatively-valenced decision options are preferentially converted to positive decision options - is used when categories are not otherwise comparable.","PeriodicalId":311534,"journal":{"name":"Workshop on Computational Models of Narrative","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Computational Models of Narrative","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.CMN.2013.43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A major concern regarding the study of narratives regards how they are indexed and retrieved. This is a question which touches on the structure of human memory in general. Indeed, if narratives capture the substance of human thought, then data that we have already collected regarding human memory is of central importance to the computational study of narrative. Fuzzy Trace Theory assumes that memory for narrative is simultaneously stored at multiple levels of abstraction and, whenever possible, decision-makers interpret a stimulus qualitatively and therefore operate on a simple - typically categorical - "gist" representation. Here, we present a computational model of Fuzzy Trace Theory applied to explain the impact of changes in a narrative upon risky-choice framing effects. Overall, our theory predicts the outcome of 20 experimental effects using only three basic assumptions: 1) preference for lowest level of gist, that is, categorical processing; 2) decision options that fall within the same categorical description are then interpreted using finer-grained (ordinal or verbatim) distinctions; and 3) once the options are mentally represented, decision preferences are generated on the basis of simple positive vs. negative valences stored in long-term memory (e.g., positive value for human lives). A fourth assumption - that negatively-valenced decision options are preferentially converted to positive decision options - is used when categories are not otherwise comparable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
叙事记忆中的主旨与逐字
叙述研究的一个主要问题是如何索引和检索它们。这是一个涉及人类一般记忆结构的问题。事实上,如果叙事捕捉到了人类思想的实质,那么我们已经收集到的关于人类记忆的数据对于叙事的计算研究至关重要。模糊痕迹理论认为,叙述的记忆同时储存在多个抽象层次上,只要有可能,决策者就定性地解释刺激,因此在一个简单的-通常是分类的-“要点”表征上操作。在这里,我们提出了一个模糊轨迹理论的计算模型,用于解释叙事变化对风险选择框架效应的影响。总的来说,我们的理论仅使用三个基本假设来预测20个实验效应的结果:1)对最低水平主旨的偏好,即分类处理;2)属于同一分类描述的决策选项,然后使用细粒度(顺序或逐字)区分进行解释;3)一旦选择被心理表征,决策偏好就会基于储存在长期记忆中的简单的积极与消极价值(例如,对人类生命的积极价值)而产生。第四个假设——负价值的决策选项优先转换为积极的决策选项——在类别不具有可比性的情况下使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Appraisal of Computational Model for Yorùbá Folktale Narrative Comparing Extant Story Classifiers: Results & New Directions The Love Equation: Computational Modeling of Romantic Relationships in French Classical Drama Governing Narrative Events With Institutional Norms Animacy Detection in Stories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1