Comparing Extant Story Classifiers: Results & New Directions

Joshua D. Eisenberg, W. V. Yarlott, Mark A. Finlayson
{"title":"Comparing Extant Story Classifiers: Results & New Directions","authors":"Joshua D. Eisenberg, W. V. Yarlott, Mark A. Finlayson","doi":"10.4230/OASIcs.CMN.2016.6","DOIUrl":null,"url":null,"abstract":"Having access to a large set of stories is a necessary first step for robust and wide-ranging computational narrative modeling; happily, language data - including stories - are increasingly available in electronic form. Unhappily, the process of automatically separating stories from other forms of written discourse is not straightforward, and has resulted in a data collection bottleneck. Therefore researchers have sought to develop reliable, robust automatic algorithms for identifying story text mixed with other non-story text. In this paper we report on the reimplementation and experimental comparison of the two approaches to this task: Gordon's unigram classifier, and Corman's semantic triplet classifier. We cross-analyze their performance on both Gordon's and Corman's corpora, and discuss similarities, differences, and gaps in the performance of these classifiers, and point the way forward to improving their approaches.","PeriodicalId":311534,"journal":{"name":"Workshop on Computational Models of Narrative","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Computational Models of Narrative","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/OASIcs.CMN.2016.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Having access to a large set of stories is a necessary first step for robust and wide-ranging computational narrative modeling; happily, language data - including stories - are increasingly available in electronic form. Unhappily, the process of automatically separating stories from other forms of written discourse is not straightforward, and has resulted in a data collection bottleneck. Therefore researchers have sought to develop reliable, robust automatic algorithms for identifying story text mixed with other non-story text. In this paper we report on the reimplementation and experimental comparison of the two approaches to this task: Gordon's unigram classifier, and Corman's semantic triplet classifier. We cross-analyze their performance on both Gordon's and Corman's corpora, and discuss similarities, differences, and gaps in the performance of these classifiers, and point the way forward to improving their approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
比较现有故事分类器:结果与新方向
拥有大量的故事是构建强大且广泛的计算叙事模型的第一步;令人高兴的是,语言数据——包括故事——越来越多地以电子形式出现。不幸的是,自动将故事从其他形式的书面话语中分离出来的过程并不简单,并导致了数据收集的瓶颈。因此,研究人员一直在寻求开发可靠的、健壮的自动算法来识别混合在其他非故事文本中的故事文本。在本文中,我们报告了两种方法的重新实现和实验比较:Gordon的一元分类器和Corman的语义三元分类器。我们交叉分析了它们在Gordon和Corman的语料库上的表现,并讨论了这些分类器在性能上的异同和差距,并指出了改进它们的方法的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Appraisal of Computational Model for Yorùbá Folktale Narrative Comparing Extant Story Classifiers: Results & New Directions The Love Equation: Computational Modeling of Romantic Relationships in French Classical Drama Governing Narrative Events With Institutional Norms Animacy Detection in Stories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1