Live Demonstration of Alcohol Prototype for Drunken Drive Case

Priyanka Dwivedi, S. Dhanekar
{"title":"Live Demonstration of Alcohol Prototype for Drunken Drive Case","authors":"Priyanka Dwivedi, S. Dhanekar","doi":"10.1109/ICSENS.2018.8589689","DOIUrl":null,"url":null,"abstract":"In recent times ‘drink and drive’ is one of the major causes for highway accidents. These types of accidents occur due to drowsiness when the drunk driver is unable to control the vehicle. Alcohol breathalyzer is one of the essential devices which uses non-invasive technique to measure the content of alcohol in human breath and correlates to the alcohol concentration in the blood. As per the National and International standards, a driver is found guilty if the alcohol content in his breath is found to be ≥ 700 ppm. It is therefore, required for this sensor to be efficiently detecting alcohol in low levels at room temperature. Apart from this, few other desirable parameters of a sensor are selectivity, stability, repeatability and low power consumption. In this demo, we will demonstrate a real-time lab prototype which will detect level of alcohol in human breath. This kind of device will be extremely useful to traffic police for keeping vigilance on drink and drive cases.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent times ‘drink and drive’ is one of the major causes for highway accidents. These types of accidents occur due to drowsiness when the drunk driver is unable to control the vehicle. Alcohol breathalyzer is one of the essential devices which uses non-invasive technique to measure the content of alcohol in human breath and correlates to the alcohol concentration in the blood. As per the National and International standards, a driver is found guilty if the alcohol content in his breath is found to be ≥ 700 ppm. It is therefore, required for this sensor to be efficiently detecting alcohol in low levels at room temperature. Apart from this, few other desirable parameters of a sensor are selectivity, stability, repeatability and low power consumption. In this demo, we will demonstrate a real-time lab prototype which will detect level of alcohol in human breath. This kind of device will be extremely useful to traffic police for keeping vigilance on drink and drive cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
酒驾案例酒精原型现场演示
近年来,“酒后驾车”是造成公路交通事故的主要原因之一。这些类型的事故是由于醉酒司机无法控制车辆时的困倦而发生的。酒精呼气测醉仪是一种非侵入式技术测量人体呼吸中酒精含量的重要仪器,它与血液中的酒精浓度密切相关。根据国家和国际标准,如果驾驶员呼吸中的酒精含量≥700ppm,则判定有罪。因此,要求该传感器能够在室温下有效地检测低浓度的酒精。除此之外,传感器的其他一些理想参数是选择性,稳定性,可重复性和低功耗。在这个演示中,我们将展示一个实时实验室原型,它将检测人类呼吸中的酒精水平。这种装置对交通警察保持对酒后驾车案件的警惕是非常有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Silicon Photonics Based On-Chip Cantilever Vibration Measurement A Smart Temperature Sensor and Controller for Bioelectronic Implants Analysing Effect of Different Parameters on Performance of Dodecyl Benzene Sulphonic Acid Doped Polyaniline Based Ammonia Gas Sensor Defect Control in MoO3 Nanostructures as Ethanol Sensor Separation, Sensing, and Metagenomic Analysis of Aerosol Particles Using MMD Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1