Integrative Machine Learning augmentation

Rehanullah Khan
{"title":"Integrative Machine Learning augmentation","authors":"Rehanullah Khan","doi":"10.1109/ICET.2015.7389220","DOIUrl":null,"url":null,"abstract":"In this article, an integrative approach for augmenting the segmentation capabilities of the off-line trained Machine Learning (ML) classifier is presented. The proposed approach augments the ML performance in the graph cut setup. The integration of the prediction capabilities of the classifiers and neighborhood relationship of the pixels result in increase of segmentation performance. The experimental setup includes an evaluation of the Bayesian Network, Multilayer Perceptron, Random Forest and the Histogram approach of Jones and Rehg [1]. The evaluation results based on the color based detection dataset reveal that the proposed integrative approach improves the detection performance compared to using the off-line classifiers alone.","PeriodicalId":166507,"journal":{"name":"2015 International Conference on Emerging Technologies (ICET)","volume":"184 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Emerging Technologies (ICET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICET.2015.7389220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, an integrative approach for augmenting the segmentation capabilities of the off-line trained Machine Learning (ML) classifier is presented. The proposed approach augments the ML performance in the graph cut setup. The integration of the prediction capabilities of the classifiers and neighborhood relationship of the pixels result in increase of segmentation performance. The experimental setup includes an evaluation of the Bayesian Network, Multilayer Perceptron, Random Forest and the Histogram approach of Jones and Rehg [1]. The evaluation results based on the color based detection dataset reveal that the proposed integrative approach improves the detection performance compared to using the off-line classifiers alone.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
综合机器学习增强
本文提出了一种增强离线训练机器学习(ML)分类器分割能力的综合方法。提出的方法增强了图割设置中的ML性能。将分类器的预测能力与像素的邻域关系相结合,提高了分割性能。实验设置包括对贝叶斯网络、多层感知机、随机森林和Jones和Rehg[1]的直方图方法的评估。基于颜色检测数据集的评估结果表明,与单独使用离线分类器相比,提出的综合方法提高了检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A comparative study of target tracking with Kalman filter, extended Kalman filter and particle filter using received signal strength measurements Optimizing NEURON brain simulator with Remote Memory Access on distributed memory systems Theoretical and empirical based extinction coefficients for fog attenuation in terms of visibility at 850 nm Effort estimation of ETL projects using Forward Stepwise Regression An evaluation of software fault tolerance techniques for optimality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1