{"title":"Smart fan using room temperature sensor and human movement","authors":"Tri Yuga Ciputra, M. Muchlas","doi":"10.31763/simple.v5i1.60","DOIUrl":null,"url":null,"abstract":"Fans are electrical equipment that people often need in their daily lives. Fans that are available in the market generally use a manual button to turn it on and off. It is necessary to develop a system so that the fan can be turned on automatically without the need to press a button on the fan. The system designed in this study has PIR, LM35 and Ultrasonic sensor devices, while the control uses an Arduino Uno microcontroller. PIR testing is done by measuring the sensor output for each input object movement. The LM35 sensor was tested by comparing the temperature measurement results obtained with the measurement results using a standardized digital thermometer. The ultrasonic sensor is tested by comparing the detected distance reading to the actual distance using a ruler placed under the sensor. Overall system testing is done by observing the fan rotation for each given input parameters. The criteria used are if there is human movement and the room temperature is above 28 0C and the object distance is less than 16 cm, then fan 1 and fan 2 rotate simultaneously. Another criterion, if the temperature is below 28 0C, then fan 1 turns off even though there is human movement and fan 2 remains on because the object distance is limited to less than 16 cm. The results showed that the system had worked well, namely fan 1 and fan 2 had behaved according to the specified criteria. This system is expected to be used to assist humans in operating the fan automatically based on room temperature, human movement, and human distance.","PeriodicalId":115994,"journal":{"name":"Signal and Image Processing Letters","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Image Processing Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31763/simple.v5i1.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fans are electrical equipment that people often need in their daily lives. Fans that are available in the market generally use a manual button to turn it on and off. It is necessary to develop a system so that the fan can be turned on automatically without the need to press a button on the fan. The system designed in this study has PIR, LM35 and Ultrasonic sensor devices, while the control uses an Arduino Uno microcontroller. PIR testing is done by measuring the sensor output for each input object movement. The LM35 sensor was tested by comparing the temperature measurement results obtained with the measurement results using a standardized digital thermometer. The ultrasonic sensor is tested by comparing the detected distance reading to the actual distance using a ruler placed under the sensor. Overall system testing is done by observing the fan rotation for each given input parameters. The criteria used are if there is human movement and the room temperature is above 28 0C and the object distance is less than 16 cm, then fan 1 and fan 2 rotate simultaneously. Another criterion, if the temperature is below 28 0C, then fan 1 turns off even though there is human movement and fan 2 remains on because the object distance is limited to less than 16 cm. The results showed that the system had worked well, namely fan 1 and fan 2 had behaved according to the specified criteria. This system is expected to be used to assist humans in operating the fan automatically based on room temperature, human movement, and human distance.