ERROR CONTROL IN THE NUMERICAL POSTERIOR DISTRIBUTION IN THE BAYESIAN UQ ANALYSIS OF A SEMILINEAR EVOLUTION PDE

M. Daza-Torres, J. C. Montesinos-L'opez, Marcos A. Capistr'an, J. Christen, H. Haario
{"title":"ERROR CONTROL IN THE NUMERICAL POSTERIOR DISTRIBUTION IN THE BAYESIAN UQ ANALYSIS OF A SEMILINEAR EVOLUTION PDE","authors":"M. Daza-Torres, J. C. Montesinos-L'opez, Marcos A. Capistr'an, J. Christen, H. Haario","doi":"10.1615/int.j.uncertaintyquantification.2020033516","DOIUrl":null,"url":null,"abstract":"We elaborate on results obtained in \\cite{christen2018} for controlling the numerical posterior error for Bayesian UQ problems, now considering forward maps arising from the solution of a semilinear evolution partial differential equation. Results in \\cite{christen2018} demand an error estimate for the numerical solution of the FM. Our contribution is a numerical method for computing after-the-fact (i.e. a posteriori) error estimates for semilinear evolution PDEs, and show the potential applicability of \\cite{christen2018} in this important wide range family of PDEs. Numerical examples are given to illustrate the efficiency of the proposed method, obtaining numerical posterior distributions for unknown parameters that are nearly identical to the corresponding theoretical posterior, by keeping their Bayes factor close to 1.","PeriodicalId":413623,"journal":{"name":"arXiv: Other Statistics","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Other Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2020033516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We elaborate on results obtained in \cite{christen2018} for controlling the numerical posterior error for Bayesian UQ problems, now considering forward maps arising from the solution of a semilinear evolution partial differential equation. Results in \cite{christen2018} demand an error estimate for the numerical solution of the FM. Our contribution is a numerical method for computing after-the-fact (i.e. a posteriori) error estimates for semilinear evolution PDEs, and show the potential applicability of \cite{christen2018} in this important wide range family of PDEs. Numerical examples are given to illustrate the efficiency of the proposed method, obtaining numerical posterior distributions for unknown parameters that are nearly identical to the corresponding theoretical posterior, by keeping their Bayes factor close to 1.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
误差控制中的数值后验分布在贝叶斯uq分析中的半线性演化方程
我们详细阐述了\cite{christen2018}中获得的结果,用于控制贝叶斯UQ问题的数值后验误差,现在考虑由半线性演化偏微分方程的解产生的正演映射。结果在\cite{christen2018}中要求对调频的数值解进行误差估计。我们的贡献是一种用于计算半线性演化偏微分方程事后(即后验)误差估计的数值方法,并显示\cite{christen2018}在这一重要的大范围偏微分方程家族中的潜在适用性。数值算例说明了该方法的有效性,通过保持贝叶斯因子接近于1,得到了与理论后验几乎相同的未知参数的数值后验分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On statistical deficiency: Why the test statistic of the matching method is hopelessly underpowered and uniquely informative The rule of conditional probability is valid in quantum theory [Comment on Gelman & Yao's "Holes in Bayesian statistics"] Popper’s Falsification and Corroboration from the Statistical Perspectives Learning as We Go: An Examination of the Statistical Accuracy of COVID19 Daily Death Count Predictions Exploring the Effects of COVID-19 Containment Policies on Crime: An Empirical Analysis of the Short-term Aftermath in Los Angeles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1