J. Verbesselt, M. Herold, Rob J Hyndman, A. Zeileis, D. Culvenor
{"title":"A robust approach for phenological change detection within satellite image time series","authors":"J. Verbesselt, M. Herold, Rob J Hyndman, A. Zeileis, D. Culvenor","doi":"10.1109/MULTI-TEMP.2011.6005042","DOIUrl":null,"url":null,"abstract":"The majority of phenological studies have focussed on extracting critical points, i.e. phenological metrics such as start-of-season, in the seasonal growth cycle. These metrics do not exploit the full temporal detail of time series, depend on their definition or threshold, and are influenced by disturbances. Here, we evaluated a robust phenological change detection ability of a method for detecting abrupt, gradual, and phenological changes within time series. BFAST, Breaks For Additive Seasonal and Trend method, integrates the decomposition of time series into trend, seasonal, and remainder components with methods for detecting change within trend and seasonal (i.e. phenology) component. We tested BFAST by analysing 16-day MODIS NDVI composites (MOD13C1 collection 5) between 2000–2009 covering Australia. This illustrated that the method is able to detect the timing of major phenological changes within time series while accounting for abrupt disturbances and gradual trends. It was also shown that the phenological change detection is influenced by the signal-to-noise ratio of the time series. The BFAST method is a generic change detection method which can be applied to any time series data. The methods are available in the BFAST package for R [1] from CRAN (http://CRAN.R-project. org/package=bfast).","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
The majority of phenological studies have focussed on extracting critical points, i.e. phenological metrics such as start-of-season, in the seasonal growth cycle. These metrics do not exploit the full temporal detail of time series, depend on their definition or threshold, and are influenced by disturbances. Here, we evaluated a robust phenological change detection ability of a method for detecting abrupt, gradual, and phenological changes within time series. BFAST, Breaks For Additive Seasonal and Trend method, integrates the decomposition of time series into trend, seasonal, and remainder components with methods for detecting change within trend and seasonal (i.e. phenology) component. We tested BFAST by analysing 16-day MODIS NDVI composites (MOD13C1 collection 5) between 2000–2009 covering Australia. This illustrated that the method is able to detect the timing of major phenological changes within time series while accounting for abrupt disturbances and gradual trends. It was also shown that the phenological change detection is influenced by the signal-to-noise ratio of the time series. The BFAST method is a generic change detection method which can be applied to any time series data. The methods are available in the BFAST package for R [1] from CRAN (http://CRAN.R-project. org/package=bfast).