Model Predictive Control of Two-Area Load Frequency Control Based Imperialist Competitive Algorithm

M. Elsisi, M. Aboelela, M. Soliman, W. Mansour
{"title":"Model Predictive Control of Two-Area Load Frequency Control Based Imperialist Competitive Algorithm","authors":"M. Elsisi, M. Aboelela, M. Soliman, W. Mansour","doi":"10.11591/IJEECS.V16.I1.PP75-82","DOIUrl":null,"url":null,"abstract":"Imperialist Competitive Algorithm (ICA) has recently been explored to develop a novel algorithm for distributed optimization and control. This paper proposes a Model Predictive Control (MPC) of Load Frequency Control (LFC) based ICA to enhance the damping of oscillations in a two-area power system. A two-area non-reheat thermal system is considered to be equipped with Model Predictive Control (MPC). ICA is utilized to search for optimal controller parameters by minimizing a time-domain based objective function. The performance of the proposed controller has been evaluated with the performance of the conventional PI controller, and  PI  controller  tuned  by  ICA in  order  to  demonstrate  the  superior efficiency of the proposed MPC tuned by ICA. Simulation results emphasis on the better performance of the optimized MPC based on ICA in compare to optimized PI controller based on ICA and conventional one over wide range of operating conditions, and system parameters variations.","PeriodicalId":247642,"journal":{"name":"TELKOMNIKA Indonesian Journal of Electrical Engineering","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"TELKOMNIKA Indonesian Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/IJEECS.V16.I1.PP75-82","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Imperialist Competitive Algorithm (ICA) has recently been explored to develop a novel algorithm for distributed optimization and control. This paper proposes a Model Predictive Control (MPC) of Load Frequency Control (LFC) based ICA to enhance the damping of oscillations in a two-area power system. A two-area non-reheat thermal system is considered to be equipped with Model Predictive Control (MPC). ICA is utilized to search for optimal controller parameters by minimizing a time-domain based objective function. The performance of the proposed controller has been evaluated with the performance of the conventional PI controller, and  PI  controller  tuned  by  ICA in  order  to  demonstrate  the  superior efficiency of the proposed MPC tuned by ICA. Simulation results emphasis on the better performance of the optimized MPC based on ICA in compare to optimized PI controller based on ICA and conventional one over wide range of operating conditions, and system parameters variations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于帝国竞争算法的两区负荷频率控制模型预测控制
帝国主义竞争算法(ICA)是一种用于分布式优化和控制的新算法。本文提出了一种基于ICA的负荷频率控制模型预测控制(MPC),以增强双区电力系统的振荡阻尼。研究了一种采用模型预测控制(MPC)的两区非再热热系统。利用独立分量分析通过最小化基于时域的目标函数来搜索最优控制器参数。通过与传统PI控制器和经ICA调优的PI控制器的性能比较,验证了采用ICA调优的MPC的优越性能。仿真结果表明,在大范围工况和系统参数变化情况下,优化后的基于ICA的MPC比基于ICA和传统PI控制器的MPC具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal Coordination of Overcurrent and Distance Relays Using Cuckoo Optimization Algorithm Tissue-like P system based DNA-GA for clustering Layer Recurrent Neural Network based Power System Load Forecasting A New Algorithm for Protection of Small Scale Synchronous Generators Against Transient Instability Power Generation Using Speed Breakers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1