Diagnostics of the apokamp plasma parameters by emission spectra

V. Kuznetsov, V. Panarin, E. Sosnin, V. Skakun, D. Sorokin
{"title":"Diagnostics of the apokamp plasma parameters by emission spectra","authors":"V. Kuznetsov, V. Panarin, E. Sosnin, V. Skakun, D. Sorokin","doi":"10.1117/12.2612737","DOIUrl":null,"url":null,"abstract":"Using emission spectra, the electronic, vibrational, rotational, gas temperatures and the reduced electric field strength at different distances along the propagation of the apokamp from the discharge channel at an air pressure of 150 Torr, a voltage of 7.6 kV, and a frequency of 37.5 kHz were determined. To determine the above values of plasma parameters, the methods of optical emission spectroscopy were used, after which the experimentally obtained values were compared with the values obtained in the course of modeling the emission spectra of the discharge plasma using a code based on the radiation-collisional plasma model. It is shown that the values of the electron temperature and reduced field strength increase abruptly at a height of ~ 12 mm above the discharge channel, marking the transition from the offshoot zone to the positive streamer zone. The gas temperature along the distribution of the apokamp decreases exponentially and at a distance of 75 mm reaches about 530° C (which is about 3 times less than at the base of the apokamp). The data obtained are in agreement with the streamer model of the plasma plume of the apokamp and allow us to hope for the creation of a plasma source based on an apokampic discharge with a moderate gas temperature at the end of the plasma plume.","PeriodicalId":205170,"journal":{"name":"Atomic and Molecular Pulsed Lasers","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic and Molecular Pulsed Lasers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2612737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Using emission spectra, the electronic, vibrational, rotational, gas temperatures and the reduced electric field strength at different distances along the propagation of the apokamp from the discharge channel at an air pressure of 150 Torr, a voltage of 7.6 kV, and a frequency of 37.5 kHz were determined. To determine the above values of plasma parameters, the methods of optical emission spectroscopy were used, after which the experimentally obtained values were compared with the values obtained in the course of modeling the emission spectra of the discharge plasma using a code based on the radiation-collisional plasma model. It is shown that the values of the electron temperature and reduced field strength increase abruptly at a height of ~ 12 mm above the discharge channel, marking the transition from the offshoot zone to the positive streamer zone. The gas temperature along the distribution of the apokamp decreases exponentially and at a distance of 75 mm reaches about 530° C (which is about 3 times less than at the base of the apokamp). The data obtained are in agreement with the streamer model of the plasma plume of the apokamp and allow us to hope for the creation of a plasma source based on an apokampic discharge with a moderate gas temperature at the end of the plasma plume.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用发射光谱诊断apokamp等离子体参数
利用发射光谱,测定了在气压为150 Torr、电压为7.6 kV、频率为37.5 kHz的放电通道中,apokamp沿放电通道传播的不同距离上的电子温度、振动温度、旋转温度、气体温度和电场强度。为了确定上述等离子体参数值,采用了光学发射光谱的方法,然后将实验得到的值与基于辐射碰撞等离子体模型的代码对放电等离子体发射光谱建模过程中得到的值进行了比较。结果表明,在放电通道上方约12 mm处,电子温度和减弱场强值急剧升高,标志着从分支区过渡到正流带区。气体温度沿apokamp分布呈指数下降,在距离75mm处达到530℃左右(比apokamp底部低约3倍)。所获得的数据与apokamp等离子体羽流的拖缆模型一致,并使我们有希望在apokamp放电的基础上,在等离子体羽流末端产生中等温度的等离子体源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Channeling of femtosecond laser pulses in the turbulent atmosphere DNA destruction under the influence of VUV radiation Peculiarities of apokamp formation from electrode with ceramic coating Informative feature selection method for Raman micro-spectroscopy data Modeling the propagation of high-power femtosecond laser radiation through an aerosol with nonlinear effects occurring in it
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1