Unsupervised Online Horizontal Misalignment Detection Algorithm for Automotive Radar

Alexandru Bobaru, C. Nafornita, Vladimir Cristian Vesa
{"title":"Unsupervised Online Horizontal Misalignment Detection Algorithm for Automotive Radar","authors":"Alexandru Bobaru, C. Nafornita, Vladimir Cristian Vesa","doi":"10.1109/comm54429.2022.9817178","DOIUrl":null,"url":null,"abstract":"This paper proposes a stationary target based online unsupervised calibration algorithm that can be applied on both 4D and 3D automotive radars for its horizontal alignment and misalignment detection. The calibration process requires no special EOL (End of Line) setup or stationary structures of reference. The method is based on the accurate determination of the own vehicle velocity and by using stationary targets. The approach provides both a long-term stable azimuth mounting compensation value as well as a separate, more dynamic angle value that converges faster than the long-term value in case of small accidents. The proposed method considers the systematic errors resulted from the vehicle integration and bumper tolerances and delivers an accurate horizontal alignment correction by using filtering outlier rejection techniques. The performance is evaluated used real world data from drive tests executed with a 77 GHz series automotive radar, showing promising results.","PeriodicalId":118077,"journal":{"name":"2022 14th International Conference on Communications (COMM)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/comm54429.2022.9817178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a stationary target based online unsupervised calibration algorithm that can be applied on both 4D and 3D automotive radars for its horizontal alignment and misalignment detection. The calibration process requires no special EOL (End of Line) setup or stationary structures of reference. The method is based on the accurate determination of the own vehicle velocity and by using stationary targets. The approach provides both a long-term stable azimuth mounting compensation value as well as a separate, more dynamic angle value that converges faster than the long-term value in case of small accidents. The proposed method considers the systematic errors resulted from the vehicle integration and bumper tolerances and delivers an accurate horizontal alignment correction by using filtering outlier rejection techniques. The performance is evaluated used real world data from drive tests executed with a 77 GHz series automotive radar, showing promising results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
汽车雷达无监督在线水平对中检测算法
本文提出了一种基于静止目标的在线无监督标定算法,该算法可同时应用于四维和三维汽车雷达的水平对准和不对准检测。校准过程不需要特殊的EOL (End of Line)设置或固定的参考结构。该方法是在准确确定车辆自身速度的基础上,利用静止目标实现的。该方法既提供了一个长期稳定的方位角安装补偿值,也提供了一个单独的、更动态的角度值,在发生小事故时,它的收敛速度比长期值更快。该方法考虑了车辆集成和保险杠公差引起的系统误差,并利用滤波离群值抑制技术提供了精确的水平对中校正。使用77 GHz系列汽车雷达进行的驾驶测试的真实数据对性能进行了评估,显示出令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real- Time EEG Data Processing Using Independent Component Analysis (ICA) Combating Deforestation Using Different AGNES Approaches Performance Analysis of Transport Layer Congestion on 5G Systems Fuel Monitoring System based on IoT: Overview and Device Authentication Network Softwarization: Developments and Challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1