Dusko Karaklajic, Miroslav Knezevic, I. Verbauwhede
{"title":"Low Cost Built in Self Test for Public Key Crypto Cores","authors":"Dusko Karaklajic, Miroslav Knezevic, I. Verbauwhede","doi":"10.1109/FDTC.2010.12","DOIUrl":null,"url":null,"abstract":"The testability of cryptographic cores brings an extra dimension to the process of digital circuits testing security. The benefits of the classical methods such as the scan-chain method introduce new vulnerabilities concerning the data protection. The Built-In Self-Test (BIST) is considered to be the most suitable countermeasure for this purpose. In this work we propose the use of a digit-serial multiplier over GF (2m), that is at the heart of many public-key cryptosystems, as a basic building block for the BIST circuitry. We show how the multiplier can be configuredto operate as a Test Pattern Generator and a Signature Analyzer. Furthermore, the multiplier becomes a fully self-testable design. All the additional features come at the cost of only a few extra gates. With a hardware overhead of 0.33 % this approach makes the multiplier perfectly suitable for low-end embedded devices.","PeriodicalId":127275,"journal":{"name":"2010 Workshop on Fault Diagnosis and Tolerance in Cryptography","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Workshop on Fault Diagnosis and Tolerance in Cryptography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FDTC.2010.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
The testability of cryptographic cores brings an extra dimension to the process of digital circuits testing security. The benefits of the classical methods such as the scan-chain method introduce new vulnerabilities concerning the data protection. The Built-In Self-Test (BIST) is considered to be the most suitable countermeasure for this purpose. In this work we propose the use of a digit-serial multiplier over GF (2m), that is at the heart of many public-key cryptosystems, as a basic building block for the BIST circuitry. We show how the multiplier can be configuredto operate as a Test Pattern Generator and a Signature Analyzer. Furthermore, the multiplier becomes a fully self-testable design. All the additional features come at the cost of only a few extra gates. With a hardware overhead of 0.33 % this approach makes the multiplier perfectly suitable for low-end embedded devices.