Edge-Aware Convolution for RGB-D Image Segmentation

Rongsen Chen, Fang-Lue Zhang, Taehyun Rhee
{"title":"Edge-Aware Convolution for RGB-D Image Segmentation","authors":"Rongsen Chen, Fang-Lue Zhang, Taehyun Rhee","doi":"10.1109/IVCNZ51579.2020.9290608","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Networks using RGB-D images as input have shown superior performance in recent research in the field of semantic segmentation. In RGB-D data, the depth channel encodes information from the 3D spatial domain, which has an inherent difference with the color channels. It thus needs to be treated in a special way, rather than just processed as another channel of the input signal. Under this purpose, we propose a simple but not trivial edge-aware convolutional kernel to utilize the geometric information contained in the depth channel to extract feature maps in a more effective manner. The edge-aware convolutional kernel is built upon regular convolutional kernel, thus, it can be used to restructure existing CNN models to achieve stable and effective feature extraction for RGB-D data. We compare our result with a previous method that is closely related to our to show our method can provide more effective and stable feature extraction.","PeriodicalId":164317,"journal":{"name":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVCNZ51579.2020.9290608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Convolutional Neural Networks using RGB-D images as input have shown superior performance in recent research in the field of semantic segmentation. In RGB-D data, the depth channel encodes information from the 3D spatial domain, which has an inherent difference with the color channels. It thus needs to be treated in a special way, rather than just processed as another channel of the input signal. Under this purpose, we propose a simple but not trivial edge-aware convolutional kernel to utilize the geometric information contained in the depth channel to extract feature maps in a more effective manner. The edge-aware convolutional kernel is built upon regular convolutional kernel, thus, it can be used to restructure existing CNN models to achieve stable and effective feature extraction for RGB-D data. We compare our result with a previous method that is closely related to our to show our method can provide more effective and stable feature extraction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边缘感知卷积在RGB-D图像分割中的应用
以RGB-D图像为输入的卷积神经网络在语义分割领域的研究中表现出优异的性能。在RGB-D数据中,深度通道编码来自三维空间域的信息,这与颜色通道具有固有的区别。因此,它需要以特殊的方式处理,而不是仅仅作为输入信号的另一个通道处理。在此目的下,我们提出了一种简单但不平凡的边缘感知卷积核,利用深度通道中包含的几何信息更有效地提取特征映射。边缘感知卷积核是在正则卷积核的基础上构建的,因此,它可以用来重构现有的CNN模型,以实现对RGB-D数据稳定有效的特征提取。我们将结果与之前与我们的方法密切相关的方法进行了比较,表明我们的方法可以提供更有效和稳定的特征提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Image and Text fusion for UPMC Food-101 using BERT and CNNs Predicting Cherry Quality Using Siamese Networks Wavelet Based Thresholding for Fourier Ptychography Microscopy Improving the Efficient Neural Architecture Search via Rewarding Modifications A fair comparison of the EEG signal classification methods for alcoholic subject identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1