An Event-driven Recurrent Spiking Neural Network Architecture for Efficient Inference on FPGA

Anand Sankaran, Paul Detterer, Kalpana Kannan, Nikolaos S. Alachiotis, Federico Corradi
{"title":"An Event-driven Recurrent Spiking Neural Network Architecture for Efficient Inference on FPGA","authors":"Anand Sankaran, Paul Detterer, Kalpana Kannan, Nikolaos S. Alachiotis, Federico Corradi","doi":"10.1145/3546790.3546802","DOIUrl":null,"url":null,"abstract":"Spiking Neural Network (SNN) architectures are promising candidates for executing machine intelligence at the edge while meeting strict energy and cost reduction constraints in several application areas. To this end, we propose a new digital architecture compatible with Recurrent Spiking Neural Networks (RSNNs) trained using the PyTorch framework and Back-Propagation-Through-Time (BPTT) for optimizing the weights and the neuron’s parameters. Our architecture offers high software-to-hardware fidelity, providing high accuracy and a low number of spikes, and it targets efficient and low-cost implementations in Field Programmable Gate Arrays (FPGAs). We introduce a new time-discretization technique that uses request-acknowledge cycles between layers to allow the layer’s time execution to depend only upon the number of spikes. As a result, we achieve between 1.7x and 30x lower resource utilization and between 11x and 61x fewer spikes per inference than previous SNN implementations in FPGAs that rely on on-chip memory to store spike-time information and weight values. We demonstrate our approach using two benchmarks: MNIST digit recognition and a realistic radar and image sensory fusion for cropland classifications. Our results demonstrate that we can exploit the trade-off between accuracy, latency, and resource utilization at design time. Moreover, the use of low-cost FPGA platforms enables the deployment of several applications by satisfying the strict constraints of edge machine learning devices.","PeriodicalId":104528,"journal":{"name":"Proceedings of the International Conference on Neuromorphic Systems 2022","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Neuromorphic Systems 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546790.3546802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Spiking Neural Network (SNN) architectures are promising candidates for executing machine intelligence at the edge while meeting strict energy and cost reduction constraints in several application areas. To this end, we propose a new digital architecture compatible with Recurrent Spiking Neural Networks (RSNNs) trained using the PyTorch framework and Back-Propagation-Through-Time (BPTT) for optimizing the weights and the neuron’s parameters. Our architecture offers high software-to-hardware fidelity, providing high accuracy and a low number of spikes, and it targets efficient and low-cost implementations in Field Programmable Gate Arrays (FPGAs). We introduce a new time-discretization technique that uses request-acknowledge cycles between layers to allow the layer’s time execution to depend only upon the number of spikes. As a result, we achieve between 1.7x and 30x lower resource utilization and between 11x and 61x fewer spikes per inference than previous SNN implementations in FPGAs that rely on on-chip memory to store spike-time information and weight values. We demonstrate our approach using two benchmarks: MNIST digit recognition and a realistic radar and image sensory fusion for cropland classifications. Our results demonstrate that we can exploit the trade-off between accuracy, latency, and resource utilization at design time. Moreover, the use of low-cost FPGA platforms enables the deployment of several applications by satisfying the strict constraints of edge machine learning devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于FPGA的事件驱动循环尖峰神经网络结构
尖峰神经网络(SNN)架构是在边缘执行机器智能的有希望的候选者,同时满足一些应用领域严格的能源和成本降低限制。为此,我们提出了一种新的数字架构,兼容使用PyTorch框架和反向传播-贯穿时间(BPTT)训练的循环尖峰神经网络(rsnn),用于优化权重和神经元的参数。我们的架构提供了高软件到硬件的保真度,提供高精度和低尖峰数,它的目标是在现场可编程门阵列(fpga)中高效和低成本的实现。我们引入了一种新的时间离散化技术,该技术使用层之间的请求-确认周期来允许层的时间执行仅取决于峰值的数量。因此,与以前依赖片上存储器存储峰值时间信息和权重值的fpga中的SNN实现相比,我们实现了1.7倍到30倍的资源利用率降低,每次推理峰值减少了11倍到61倍。我们使用两个基准来演示我们的方法:MNIST数字识别和用于农田分类的现实雷达和图像感官融合。我们的结果表明,我们可以在设计时利用准确性、延迟和资源利用率之间的权衡。此外,使用低成本的FPGA平台可以通过满足边缘机器学习设备的严格限制来部署多个应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Semi-Supervised Graph Structure Learning on Neuromorphic Computers A Neuromorphic Algorithm for Radiation Anomaly Detection Optimizing Recurrent Spiking Neural Networks with Small Time Constants for Temporal Tasks LODeNNS: A Linearly-approximated and Optimized Dendrocentric Nearest Neighbor STDP Apples-to-spikes: The first detailed comparison of LASSO solutions generated by a spiking neuromorphic processor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1