Metaheuristics Optimization Algorithm to an Optimal Moroccan Diet

K. E. El Moutaouakil, M. Cheggour, S. Chellak, H. Baïzri
{"title":"Metaheuristics Optimization Algorithm to an Optimal Moroccan Diet","authors":"K. E. El Moutaouakil, M. Cheggour, S. Chellak, H. Baïzri","doi":"10.1109/ICNISC54316.2021.00072","DOIUrl":null,"url":null,"abstract":"In this work, we propose a well-balanced diet basing on very simple quadratic optimization model which controls the lack of favorable nutrients, the excess of unfavorable nutrients, and which minimizes the total glycemic load of the diet. To solve the proposed mathematical model, we call well-known metaheuristic methods: genetic algorithm, firly algorithm, particle swarm algorithm, stochastic fractal search, and moth swarm algorithm with specific operators. The parameters of these algorithms are experimentally chosen. These algorithms have been tested on 176 foods available on the Moroccan market. Firly has shown its superiority over other methods in its ability to quickly design a well-balanced diet with an acceptable glycemic load.","PeriodicalId":396802,"journal":{"name":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th Annual International Conference on Network and Information Systems for Computers (ICNISC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNISC54316.2021.00072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this work, we propose a well-balanced diet basing on very simple quadratic optimization model which controls the lack of favorable nutrients, the excess of unfavorable nutrients, and which minimizes the total glycemic load of the diet. To solve the proposed mathematical model, we call well-known metaheuristic methods: genetic algorithm, firly algorithm, particle swarm algorithm, stochastic fractal search, and moth swarm algorithm with specific operators. The parameters of these algorithms are experimentally chosen. These algorithms have been tested on 176 foods available on the Moroccan market. Firly has shown its superiority over other methods in its ability to quickly design a well-balanced diet with an acceptable glycemic load.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
最优摩洛哥饮食的元启发式优化算法
在这项工作中,我们提出了一个基于非常简单的二次优化模型的均衡饮食,该模型控制了有利营养物质的缺乏,不利营养物质的过剩,并使饮食的总血糖负荷最小化。为了求解所提出的数学模型,我们使用了众所周知的元启发式方法:遗传算法、firly算法、粒子群算法、随机分形搜索和带特定算子的飞蛾群算法。实验选择了这些算法的参数。这些算法已经在摩洛哥市场上的176种食品上进行了测试。Firly已经显示出它比其他方法的优越性,因为它能够快速设计出具有可接受的血糖负荷的均衡饮食。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explore the Performance of Capsule Neural Network Learning Discrete Features Profiling Pumped Storage Power Station via Multi-Sequence Joint Regression Trajectory Tracking Technology for Crawler Rescue Robot Insight into the Inhibitory Activities of Diverse Ligands for Tyrosinase Using Molecular and Structure-based Features Design and Optimization of Ultrasonic Fatigue Specimen Based on ANSYS Modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1