Modeling and control of a battery connected standalone photovoltaic system

Priyabrata Shaw, P. Sahu, S. Maity, Punit Kumar
{"title":"Modeling and control of a battery connected standalone photovoltaic system","authors":"Priyabrata Shaw, P. Sahu, S. Maity, Punit Kumar","doi":"10.1109/ICPEICES.2016.7853123","DOIUrl":null,"url":null,"abstract":"This paper presents modeling and control of a standalone photovoltaic (PV) system in which a battery is used as a backup source for power management between the source and the load. Lead-acid battery is commonly used in high power PV applications due to its low cost and availability in large size. The modeling of PV system and lead-acid battery by using the corresponding equivalent circuits are discussed here. Three independent control loops are proposed to control the standalone PV system; MPPT control loop for extracting maximum power from PV module under different solar irradiation, battery control loop for bidirectional power flow between battery and dc-link through buck-boost converter to keep the input dc voltage constant, and inverter control loop for maintaining good voltage regulation and achieving fast dynamic response under sudden load fluctuations. The stability of the above control loops are verified by using Bode diagram. Finally the proposed method is applied to 2 kW, 110 V, 50 Hz, two-stage single-phase standalone PV system. The simulation and the experimental results are presented to validate the theoretical analysis, effectiveness and feasibility of the proposed control strategy.","PeriodicalId":305942,"journal":{"name":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEICES.2016.7853123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper presents modeling and control of a standalone photovoltaic (PV) system in which a battery is used as a backup source for power management between the source and the load. Lead-acid battery is commonly used in high power PV applications due to its low cost and availability in large size. The modeling of PV system and lead-acid battery by using the corresponding equivalent circuits are discussed here. Three independent control loops are proposed to control the standalone PV system; MPPT control loop for extracting maximum power from PV module under different solar irradiation, battery control loop for bidirectional power flow between battery and dc-link through buck-boost converter to keep the input dc voltage constant, and inverter control loop for maintaining good voltage regulation and achieving fast dynamic response under sudden load fluctuations. The stability of the above control loops are verified by using Bode diagram. Finally the proposed method is applied to 2 kW, 110 V, 50 Hz, two-stage single-phase standalone PV system. The simulation and the experimental results are presented to validate the theoretical analysis, effectiveness and feasibility of the proposed control strategy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电池连接独立光伏系统的建模与控制
本文介绍了一个独立的光伏(PV)系统的建模和控制,其中电池被用作电源和负载之间的备用电源。铅酸电池由于其低成本和大尺寸可用性而被广泛应用于高功率光伏应用中。本文讨论了利用等效电路对光伏系统和铅酸蓄电池进行建模的方法。提出了三个独立的控制回路来控制独立的光伏系统;MPPT控制回路用于在不同太阳照射下提取光伏组件的最大功率,电池控制回路通过升压变换器实现电池与直流链路之间的双向功率流,以保持输入直流电压恒定,逆变器控制回路用于在负载突然波动下保持良好的电压调节并实现快速动态响应。利用波德图验证了上述控制回路的稳定性。最后将该方法应用于2kw, 110v, 50hz,两级单相独立光伏系统。仿真和实验结果验证了所提控制策略的理论分析、有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Renewable energy systems for generating electric power: A review A novel design of circular fractal antenna using inset line feed for multiband applications Integrated control of active front steer angle and direct yaw moment using Second Order Sliding Mode technique Voltage differencing buffered amplifier based quadrature oscillator Identification of higher order critically damped systems using relay feedback test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1