An Intelligence Artificial Fish Swarm Optimization Technique

O. Ugweje, Yachilla Baba
{"title":"An Intelligence Artificial Fish Swarm Optimization Technique","authors":"O. Ugweje, Yachilla Baba","doi":"10.1109/NAECON46414.2019.9057863","DOIUrl":null,"url":null,"abstract":"With the massive development of information and communications technologies, the need to optimize information processing power and increase accuracy is becoming very important. This paper presents the analysis of an intelligent Artificial Fish Swarm Algorithm (AFSA) that properly select optimization parameters more effectively. It is computational intelligent with ability to solve nonlinear high dimensional problems. It addresses problems of conventional AFSA migration into local minima using control parameters such as visual distance and step sizes. Performance of the algorithm was tested using a subset of applied mathematical optimization test functions such as Ackley, Cosine Mixture, Neumaier, Rosenbrock and Rastrigin functions. Numerical results show that the intelligent algorithm outperformed the standard algorithm in 4 out of the 5 test functions. This can be very useful in computationally intensive processes.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"379 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9057863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the massive development of information and communications technologies, the need to optimize information processing power and increase accuracy is becoming very important. This paper presents the analysis of an intelligent Artificial Fish Swarm Algorithm (AFSA) that properly select optimization parameters more effectively. It is computational intelligent with ability to solve nonlinear high dimensional problems. It addresses problems of conventional AFSA migration into local minima using control parameters such as visual distance and step sizes. Performance of the algorithm was tested using a subset of applied mathematical optimization test functions such as Ackley, Cosine Mixture, Neumaier, Rosenbrock and Rastrigin functions. Numerical results show that the intelligent algorithm outperformed the standard algorithm in 4 out of the 5 test functions. This can be very useful in computationally intensive processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种智能人工鱼群优化技术
随着信息通信技术的迅猛发展,优化信息处理能力和提高信息处理精度的需求变得越来越重要。本文分析了一种更有效地选择优化参数的智能人工鱼群算法。它具有计算智能,具有解决非线性高维问题的能力。它解决了使用视觉距离和步长等控制参数将传统AFSA迁移到局部最小值的问题。采用Ackley、Cosine Mixture、Neumaier、Rosenbrock和Rastrigin等应用数学优化测试函数对算法进行了性能测试。数值结果表明,智能算法在5个测试函数中有4个优于标准算法。这在计算密集型过程中非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical Cyber-Security of SCADA Systems Cluster-Based Hungarian Approach to Task Allocation for Unmanned Aerial Vehicles Privacy Preserving Medium Access Control Protocol for wireless Body Area Sensor Networks Gaussian Beam Propagation Through Turbulent Atmosphere using Second-Order Split-Step Algorithm A generalized equivalent circuit model for large-scale battery packs with cell-to-cell variation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1