Non-separable quadruple lifting structure for four-dimensional integer Wavelet Transform with reduced rounding noise

Fairoza Amira Hamzah, Taichi Yoshida, M. Iwahashi
{"title":"Non-separable quadruple lifting structure for four-dimensional integer Wavelet Transform with reduced rounding noise","authors":"Fairoza Amira Hamzah, Taichi Yoshida, M. Iwahashi","doi":"10.1109/ICASSP.2017.7952336","DOIUrl":null,"url":null,"abstract":"The Wavelet Transform (WT) in JPEG 2000 is using a ‘separable’ lifting structure, where the one-dimensional (1D) transform is put into multidimensional image signal of its spatial and temporal dimensions. A ‘non-separable’ three-dimensional (3D) structure as the existing method is used to minimize its lifting steps. The ‘non-separable’ 3D structure in the (5,3) type transform for lossless coding is proved to reduce the rounding noise inside it. However, in the (9,7) type transform for lossy coding, the rounding noise inside the ‘non-separable’ 3D structure has increased. This paper proposed a new ‘non-separable’ two-dimensional (2D) structure for integer implementation of a four-dimensional (4D) quadruple lifting WT. Since the order of the original lifting step is preserved, the total amount of the rounding noise observed in pixel values of the decoded image is significantly reduced, and the lossy coding performance for 4D input signal is increased.","PeriodicalId":118243,"journal":{"name":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7952336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The Wavelet Transform (WT) in JPEG 2000 is using a ‘separable’ lifting structure, where the one-dimensional (1D) transform is put into multidimensional image signal of its spatial and temporal dimensions. A ‘non-separable’ three-dimensional (3D) structure as the existing method is used to minimize its lifting steps. The ‘non-separable’ 3D structure in the (5,3) type transform for lossless coding is proved to reduce the rounding noise inside it. However, in the (9,7) type transform for lossy coding, the rounding noise inside the ‘non-separable’ 3D structure has increased. This paper proposed a new ‘non-separable’ two-dimensional (2D) structure for integer implementation of a four-dimensional (4D) quadruple lifting WT. Since the order of the original lifting step is preserved, the total amount of the rounding noise observed in pixel values of the decoded image is significantly reduced, and the lossy coding performance for 4D input signal is increased.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四维整数小波变换中不可分离的四重提升结构,降低了舍入噪声
JPEG 2000中的小波变换(WT)采用了“可分离”提升结构,将一维(1D)变换转化为具有空间和时间维度的多维图像信号。现有方法采用了“不可分离”的三维(3D)结构,以最大限度地减少其提升步骤。证明了(5,3)型变换中“不可分离”的三维结构在无损编码中可以降低其内部的舍入噪声。然而,在有损编码的(9,7)型变换中,“不可分离”3D结构内部的舍入噪声增加了。本文提出了一种新的“不可分”二维(2D)结构,用于四维(4D)四重提升小波的整数实现。由于保留了原始提升步骤的顺序,因此在解码图像的像素值中观察到的舍入噪声总量显著减少,并且提高了四维输入信号的有损编码性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing observability in power distribution grids A subspace approach for shrinkage parameter selection in undersampled configuration for Regularised Tyler Estimators Artificial bandwidth extension using the constant Q transform Salience based lexical features for emotion recognition Multicore distributed dictionary learning: A microarray gene expression biclustering case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1