MOdeling Of Steam Distillation System Using Hammerstein-Wiener model

Z. Mohd Yusoff, Z. Muhammad, Mohd Hezri Fazalul Rahiman, M. Tajuddin, R. Adnan, M. Taib
{"title":"MOdeling Of Steam Distillation System Using Hammerstein-Wiener model","authors":"Z. Mohd Yusoff, Z. Muhammad, Mohd Hezri Fazalul Rahiman, M. Tajuddin, R. Adnan, M. Taib","doi":"10.1109/CSPA.2011.5759917","DOIUrl":null,"url":null,"abstract":"This paper presents a new method to model a steam temperature in distillation system by using system identification. Three nonlinear models have been compared, i.e. a Hammerstein model, a Wiener model and a Hammerstein-Wiener model. In this work, we propose the utilizing of the piecewise-linear and sigmoid network Hammerstein-Wiener model for single-input single output processes. All the models have been optimized with respect to initial state, search criterion and number of iterations. The testing of the trained model will be based on percentage of best fit (R2), Final Prediction Error (FPE) and loss function (V). Among three model tested, the most accurate model is the Hammerstein-Wiener model with piecewise linear and sigmoid network estimators. This model produce highest percentage of best fit, the lowest FPE and loss function.","PeriodicalId":282179,"journal":{"name":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 7th International Colloquium on Signal Processing and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2011.5759917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a new method to model a steam temperature in distillation system by using system identification. Three nonlinear models have been compared, i.e. a Hammerstein model, a Wiener model and a Hammerstein-Wiener model. In this work, we propose the utilizing of the piecewise-linear and sigmoid network Hammerstein-Wiener model for single-input single output processes. All the models have been optimized with respect to initial state, search criterion and number of iterations. The testing of the trained model will be based on percentage of best fit (R2), Final Prediction Error (FPE) and loss function (V). Among three model tested, the most accurate model is the Hammerstein-Wiener model with piecewise linear and sigmoid network estimators. This model produce highest percentage of best fit, the lowest FPE and loss function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Hammerstein-Wiener模型的蒸汽蒸馏系统建模
本文提出了一种用系统辨识法建立蒸馏系统汽温模型的新方法。比较了三种非线性模型,即Hammerstein模型、Wiener模型和Hammerstein-Wiener模型。在这项工作中,我们提出利用分段线性和s型网络Hammerstein-Wiener模型进行单输入单输出过程。所有模型都从初始状态、搜索准则和迭代次数三个方面进行了优化。训练模型的检验将基于最佳拟合百分比(R2),最终预测误差(FPE)和损失函数(V)。在测试的三个模型中,最准确的模型是带有分段线性和s型网络估计器的Hammerstein-Wiener模型。该模型产生最高的最佳拟合百分比,最低的FPE和损失函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nucleus segmentation technique for acute Leukemia An improvement of MIPS rate in detection of DTMF signals of 64 subscribers using GOERTZEL's algorithm Simple GUI design for monitoring of a remotely operated quadrotor unmanned aerial vehicle (UAV) Potential of single orthorectified of high resolution satellite image (Ikonos) for large scale mapping The classification of material mechanical properties using non-destructive vibration technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1