Ulf Brefeld, Thomas Gärtner, T. Scheffer, S. Wrobel
{"title":"Efficient co-regularised least squares regression","authors":"Ulf Brefeld, Thomas Gärtner, T. Scheffer, S. Wrobel","doi":"10.1145/1143844.1143862","DOIUrl":null,"url":null,"abstract":"In many applications, unlabelled examples are inexpensive and easy to obtain. Semi-supervised approaches try to utilise such examples to reduce the predictive error. In this paper, we investigate a semi-supervised least squares regression algorithm based on the co-learning approach. Similar to other semi-supervised algorithms, our base algorithm has cubic runtime complexity in the number of unlabelled examples. To be able to handle larger sets of unlabelled examples, we devise a semi-parametric variant that scales linearly in the number of unlabelled examples. Experiments show a significant error reduction by co-regularisation and a large runtime improvement for the semi-parametric approximation. Last but not least, we propose a distributed procedure that can be applied without collecting all data at a single site.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"173","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 173
Abstract
In many applications, unlabelled examples are inexpensive and easy to obtain. Semi-supervised approaches try to utilise such examples to reduce the predictive error. In this paper, we investigate a semi-supervised least squares regression algorithm based on the co-learning approach. Similar to other semi-supervised algorithms, our base algorithm has cubic runtime complexity in the number of unlabelled examples. To be able to handle larger sets of unlabelled examples, we devise a semi-parametric variant that scales linearly in the number of unlabelled examples. Experiments show a significant error reduction by co-regularisation and a large runtime improvement for the semi-parametric approximation. Last but not least, we propose a distributed procedure that can be applied without collecting all data at a single site.