Vulnerability Assessment framework for a Smart Grid

M. Rashed, J. Kamruzzaman, I. Gondal, Syed Islam
{"title":"Vulnerability Assessment framework for a Smart Grid","authors":"M. Rashed, J. Kamruzzaman, I. Gondal, Syed Islam","doi":"10.1109/gpecom55404.2022.9815621","DOIUrl":null,"url":null,"abstract":"The increasing demand for the interconnected IoT based smart grid is facing threats from cyber-attacks due to inherent vulnerability in the smart grid network. There is a pressing need to evaluate and model these vulnerabilities in the network to avoid cascading failures in power systems. In this paper, we propose and evaluate a vulnerability assessment framework based on attack probability for the protection and security of a smart grid. Several factors were taken into consideration such as the probability of attack, propagation of attack from a parent node to child nodes, effectiveness of basic metering system, Kalman estimation and Advanced Metering Infrastructure (AMI). The IEEE-300 bus smart grid was simulated using MATPOWER to study the effectiveness of the proposed framework by injecting false data injection attacks (FDIA); and studying their propagation. Our results show that the use of severity assessment standards such as Common Vulnerability Scoring System (CVSS), AMI measurements and Kalman estimates were very effective for evaluating the vulnerability assessment of smart grid in the presence of FDIA attack scenarios.","PeriodicalId":441321,"journal":{"name":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th Global Power, Energy and Communication Conference (GPECOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/gpecom55404.2022.9815621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for the interconnected IoT based smart grid is facing threats from cyber-attacks due to inherent vulnerability in the smart grid network. There is a pressing need to evaluate and model these vulnerabilities in the network to avoid cascading failures in power systems. In this paper, we propose and evaluate a vulnerability assessment framework based on attack probability for the protection and security of a smart grid. Several factors were taken into consideration such as the probability of attack, propagation of attack from a parent node to child nodes, effectiveness of basic metering system, Kalman estimation and Advanced Metering Infrastructure (AMI). The IEEE-300 bus smart grid was simulated using MATPOWER to study the effectiveness of the proposed framework by injecting false data injection attacks (FDIA); and studying their propagation. Our results show that the use of severity assessment standards such as Common Vulnerability Scoring System (CVSS), AMI measurements and Kalman estimates were very effective for evaluating the vulnerability assessment of smart grid in the presence of FDIA attack scenarios.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能电网脆弱性评估框架
由于智能电网自身的脆弱性,人们对基于物联网的互联智能电网的需求日益增长,但也面临着网络攻击的威胁。迫切需要对网络中的这些漏洞进行评估和建模,以避免电力系统的级联故障。本文提出并评估了一种基于攻击概率的智能电网防护与安全漏洞评估框架。考虑了攻击概率、攻击从父节点到子节点的传播、基本计量系统的有效性、卡尔曼估计和高级计量基础设施(AMI)等因素。利用MATPOWER对IEEE-300总线智能电网进行仿真,通过注入虚假数据注入攻击(FDIA)来研究所提出框架的有效性;研究它们的繁殖。研究结果表明,使用通用漏洞评分系统(CVSS)、AMI测量和卡尔曼估计等严重性评估标准对存在FDIA攻击场景的智能电网的漏洞评估是非常有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conducted Emissions Analysis of DC-DC Buck Converter A Study on the Effect of Phase Shifter Quantization Error on the Spectral Efficiency Using Neural Network Delay Margin Computation of Generator Excitation Control System with Incommensurate Time Delays Using Critical Eigenvalue Tracing Method ICT Enabled Smart Street Parking System for Smart Cities Experimental Impact Analysis of the Refrigerator Cable Design On Disturbance Power Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1