Social Engineering Defender (SE.Def): Human Emotion Factor Based Classification and Defense against Social Engineering Attacks

Adarsh S. V. Nair, Rathnakar Achary
{"title":"Social Engineering Defender (SE.Def): Human Emotion Factor Based Classification and Defense against Social Engineering Attacks","authors":"Adarsh S. V. Nair, Rathnakar Achary","doi":"10.1109/ICAIA57370.2023.10169678","DOIUrl":null,"url":null,"abstract":"One of the weakest links in any security system is neither the devices used nor the programs running on them; but the human beings using these devices. Most cyberattacks are initiated by human error. Hackers always use the most accessible and effective social engineering techniques to attack. Simply put, it is the art of manipulating people into sharing sensitive and confidential information. This research proposes a framework with four modules, namely, a source analyzer, a content classifier and analyzer, a link analyzer, and a risk reporting module, as a social engineering defender system for categorizing the risks before the email reaches the inbox of the user. Before it reaches the end user’s inbox, the system blocks the emails the social engineering defender has marked as “very high risk”.","PeriodicalId":196526,"journal":{"name":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Artificial Intelligence and Applications (ICAIA) Alliance Technology Conference (ATCON-1)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIA57370.2023.10169678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the weakest links in any security system is neither the devices used nor the programs running on them; but the human beings using these devices. Most cyberattacks are initiated by human error. Hackers always use the most accessible and effective social engineering techniques to attack. Simply put, it is the art of manipulating people into sharing sensitive and confidential information. This research proposes a framework with four modules, namely, a source analyzer, a content classifier and analyzer, a link analyzer, and a risk reporting module, as a social engineering defender system for categorizing the risks before the email reaches the inbox of the user. Before it reaches the end user’s inbox, the system blocks the emails the social engineering defender has marked as “very high risk”.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社会工程防御者(SE.Def):基于人类情感因素的分类和防御社会工程攻击
任何安全系统中最薄弱的环节之一既不是所使用的设备,也不是其上运行的程序;但是使用这些设备的人类。大多数网络攻击都是由人为错误引发的。黑客总是使用最容易获得和最有效的社会工程技术进行攻击。简单地说,这是一种操纵人们分享敏感和机密信息的艺术。本研究提出了一个包含源分析模块、内容分类分析模块、链接分析模块和风险报告模块四个模块的框架,作为社会工程防御系统,在邮件到达用户收件箱之前对风险进行分类。在邮件到达最终用户的收件箱之前,系统会拦截被社会工程防御者标记为“非常高风险”的邮件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey Paper on Precision Agriculture based Intelligent system for Plant Leaf Disease Identification An End to End Hybrid Learning Model for Covid-19 Detection from Chest X-ray Images A Comparison between the FOTID and FOPID Controller for the Close-Loop Speed Control of a DC Motor System Software Requirement Classification Using Machine Learning Algorithms Flood Risk Assessment Mapping of Nainital District Using GIS Tools
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1