Content-Based Audio Classification Using Support Vector Machines and Independent Component Analysis

Jia-Ching Wang, Jhing-Fa Wang, Cai-Bei Lin, Kun-Ting Jian, Wai-He Kuok
{"title":"Content-Based Audio Classification Using Support Vector Machines and Independent Component Analysis","authors":"Jia-Ching Wang, Jhing-Fa Wang, Cai-Bei Lin, Kun-Ting Jian, Wai-He Kuok","doi":"10.1109/ICPR.2006.407","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new audio classification system. First, a frame-based multiclass support vector machine (SVM) for audio classification is proposed. The accuracy rate has significant improvements over conventional file-based SVM audio classifier. In feature selection, this study transforms the log powers of the critical-band filters based on independent component analysis (ICA). This new audio feature is combined with mel-frequency cepstral coefficients (MFCCs) and five perceptual features to form an audio feature set. The superiority of the proposed system has been demonstrated via a 15-class sound database with a 91.7% accuracy rate","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

In this paper, we present a new audio classification system. First, a frame-based multiclass support vector machine (SVM) for audio classification is proposed. The accuracy rate has significant improvements over conventional file-based SVM audio classifier. In feature selection, this study transforms the log powers of the critical-band filters based on independent component analysis (ICA). This new audio feature is combined with mel-frequency cepstral coefficients (MFCCs) and five perceptual features to form an audio feature set. The superiority of the proposed system has been demonstrated via a 15-class sound database with a 91.7% accuracy rate
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内容的支持向量机和独立分量分析音频分类
本文提出了一种新的音频分类系统。首先,提出了一种基于帧的多类支持向量机音频分类方法。与传统的基于文件的SVM音频分类器相比,准确率有显著提高。在特征选择方面,本文基于独立分量分析(ICA)对关键波段滤波器的对数幂进行变换。这种新的音频特征与mel-frequency倒谱系数(MFCCs)和五个感知特征相结合,形成一个音频特征集。通过对15类声音数据库的分析,证明了该系统的优越性,准确率达到91.7%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of Human Body Parts Using Deformable Triangulation Noise Variance Adaptive SEA for Motion Estimation: A Two-Stage Schema A Hybrid Recognition Scheme Based on Partially Labeled SOM and MLP A Captcha Mechanism By Exchange Image Blocks Rectification with Intersecting Optical Axes for Stereoscopic Visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1