Two-dimensional Chebyshev polynomials for image fusion

Z. Omar, N. Mitianoudis, T. Stathaki
{"title":"Two-dimensional Chebyshev polynomials for image fusion","authors":"Z. Omar, N. Mitianoudis, T. Stathaki","doi":"10.1109/PCS.2010.5702526","DOIUrl":null,"url":null,"abstract":"This report documents in detail the research carried out by the author throughout his first year. The paper presents a novel method for fusing images in a domain concerning multiple sensors and modalities. Using Chebyshev polynomials as basis functions, the image is decomposed to perform fusion at feature level. Results show favourable performance compared to previous efforts on image fusion, namely ICA and DT-CWT, in noise affected images. The work presented here aims at providing a novel framework for future studies in image analysis and may introduce innovations in the fields of surveillance, medical imaging and remote sensing.","PeriodicalId":255142,"journal":{"name":"28th Picture Coding Symposium","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"28th Picture Coding Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCS.2010.5702526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

This report documents in detail the research carried out by the author throughout his first year. The paper presents a novel method for fusing images in a domain concerning multiple sensors and modalities. Using Chebyshev polynomials as basis functions, the image is decomposed to perform fusion at feature level. Results show favourable performance compared to previous efforts on image fusion, namely ICA and DT-CWT, in noise affected images. The work presented here aims at providing a novel framework for future studies in image analysis and may introduce innovations in the fields of surveillance, medical imaging and remote sensing.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维切比雪夫多项式图像融合
这份报告详细记录了作者在第一年所进行的研究。提出了一种多传感器和多模态域图像融合的新方法。以切比雪夫多项式为基函数,对图像进行分解,在特征级进行融合。结果表明,在噪声影响的图像中,与之前的图像融合(即ICA和DT-CWT)相比,该方法具有良好的性能。本文介绍的工作旨在为今后的图像分析研究提供一个新的框架,并可能在监测、医学成像和遥感领域引入创新。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Focus on visual rendering quality through content-based depth map coding Image quality assessment based on local orientation distributions Intra picture coding with planar representations Real-time Free Viewpoint Television for embedded systems A subjective image quality metric for bit-inversion-based watermarking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1