Multichannel blind deconvolution of non-minimum phase systems using information backpropagation

L.-Q. Zhang, A. Cichocki, S. Amari
{"title":"Multichannel blind deconvolution of non-minimum phase systems using information backpropagation","authors":"L.-Q. Zhang, A. Cichocki, S. Amari","doi":"10.1109/ICONIP.1999.843988","DOIUrl":null,"url":null,"abstract":"We present a novel method-filter decomposition approach, for multichannel blind deconvolution of non-minimum phase systems. In earlier work we developed an efficient natural gradient algorithm for causal FIR filters. In this paper we further study the natural gradient method for noncausal filters. We decompose the doubly finite filters into a product of two filters, a noncausal FIR filter and a causal FIR filter. The natural gradient algorithm is employed to train the causal FIR filter, and a novel information backpropagation algorithm is developed for training the noncausal FIR filter. Simulations are given to illustrate the effectiveness and validity of the algorithm.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"249 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.843988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

Abstract

We present a novel method-filter decomposition approach, for multichannel blind deconvolution of non-minimum phase systems. In earlier work we developed an efficient natural gradient algorithm for causal FIR filters. In this paper we further study the natural gradient method for noncausal filters. We decompose the doubly finite filters into a product of two filters, a noncausal FIR filter and a causal FIR filter. The natural gradient algorithm is employed to train the causal FIR filter, and a novel information backpropagation algorithm is developed for training the noncausal FIR filter. Simulations are given to illustrate the effectiveness and validity of the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于信息反向传播的非最小相位系统多通道盲反卷积
针对非最小相位系统的盲反褶积问题,提出了一种新的滤波分解方法。在早期的工作中,我们为因果FIR滤波器开发了一种高效的自然梯度算法。本文进一步研究了非因果滤波器的自然梯度法。我们将双有限滤波器分解为两个滤波器的乘积,一个是非因果FIR滤波器和一个因果FIR滤波器。采用自然梯度算法训练因果FIR滤波器,并提出了一种新的信息反向传播算法来训练非因果FIR滤波器。仿真结果表明了该算法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Market basket analysis of library circulation data Software forensics for discriminating between program authors using case-based reasoning, feedforward neural networks and multiple discriminant analysis Learning and recall of temporal sequences in the network of CA3 pyramidal cells and a basket cell Adaptive sensory integrating neural network based on a Bayesian estimation method Pre-filter design for high speed contouring machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1