Jun-Goo Shin, Hyun-Jin Kim, D. Kum, Dong Ha Kim, C. Park, H. Tae, Jeong-Hyun Seo, B. Shin
{"title":"Effecs of Bubble Control on Synthesis and Characterization of Carbon Nanoparticle in AC Solution Plasma","authors":"Jun-Goo Shin, Hyun-Jin Kim, D. Kum, Dong Ha Kim, C. Park, H. Tae, Jeong-Hyun Seo, B. Shin","doi":"10.1109/PLASMA.2017.8496170","DOIUrl":null,"url":null,"abstract":"In the last few decade, carbon nanomaterials such as fullerene, carbon nanotube, and graphite have focused because of its controllable optical, electrical, thermal, and strongly physical properties 1. Therefore, various synthesis methods for obtaining carbon nanoparticle have developed in depth. Among these methods, alternating-current (AC) solution plasma method has great advantage for synthesizing carbon nanoparticles due to having simple, fast, lowtemperature, and high efficiency 2. However, carbon nanoparticles have synthesized via graphite electrode or solution containing carbon atoms. The discharge and nanoparticle properties in solution plasma device with various bubble gas compositions have not yet been studied in detail in terms of bubble gas kinds, bubble speeds, and gas mixture ratios. Accordingly, in this study, we examine to find out influences of bubble gas control on carbon material synthesis and characterization in solution plasma device. The discharge and carbon nanoparticles characteristics were examined relative to the various bubble conditions such as bubble gas kinds, bubble speeds, and gas mixture ratios in solution plasma device. More researches on AC solution plasma physics and properties of carbon nanomaterials will be carried out in detail.","PeriodicalId":145705,"journal":{"name":"2017 IEEE International Conference on Plasma Science (ICOPS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Plasma Science (ICOPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLASMA.2017.8496170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In the last few decade, carbon nanomaterials such as fullerene, carbon nanotube, and graphite have focused because of its controllable optical, electrical, thermal, and strongly physical properties 1. Therefore, various synthesis methods for obtaining carbon nanoparticle have developed in depth. Among these methods, alternating-current (AC) solution plasma method has great advantage for synthesizing carbon nanoparticles due to having simple, fast, lowtemperature, and high efficiency 2. However, carbon nanoparticles have synthesized via graphite electrode or solution containing carbon atoms. The discharge and nanoparticle properties in solution plasma device with various bubble gas compositions have not yet been studied in detail in terms of bubble gas kinds, bubble speeds, and gas mixture ratios. Accordingly, in this study, we examine to find out influences of bubble gas control on carbon material synthesis and characterization in solution plasma device. The discharge and carbon nanoparticles characteristics were examined relative to the various bubble conditions such as bubble gas kinds, bubble speeds, and gas mixture ratios in solution plasma device. More researches on AC solution plasma physics and properties of carbon nanomaterials will be carried out in detail.