Christoph Böhm, Gerard de Melo, Felix Naumann, G. Weikum
{"title":"LINDA: distributed web-of-data-scale entity matching","authors":"Christoph Böhm, Gerard de Melo, Felix Naumann, G. Weikum","doi":"10.1145/2396761.2398582","DOIUrl":null,"url":null,"abstract":"Linked Data has emerged as a powerful way of interconnecting structured data on the Web. However, the cross-linkage between Linked Data sources is not as extensive as one would hope for. In this paper, we formalize the task of automatically creating \"sameAs\" links across data sources in a globally consistent manner. Our algorithm, presented in a multi-core as well as a distributed version, achieves this link generation by accounting for joint evidence of a match. Experiments confirm that our system scales beyond 100 million entities and delivers highly accurate results despite the vast heterogeneity and daunting scale.","PeriodicalId":313414,"journal":{"name":"Proceedings of the 21st ACM international conference on Information and knowledge management","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Information and knowledge management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2396761.2398582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94
Abstract
Linked Data has emerged as a powerful way of interconnecting structured data on the Web. However, the cross-linkage between Linked Data sources is not as extensive as one would hope for. In this paper, we formalize the task of automatically creating "sameAs" links across data sources in a globally consistent manner. Our algorithm, presented in a multi-core as well as a distributed version, achieves this link generation by accounting for joint evidence of a match. Experiments confirm that our system scales beyond 100 million entities and delivers highly accurate results despite the vast heterogeneity and daunting scale.