Finding Gait in Space and Time

Yang Ran, R. Chellappa, Q. Zheng
{"title":"Finding Gait in Space and Time","authors":"Yang Ran, R. Chellappa, Q. Zheng","doi":"10.1109/ICPR.2006.562","DOIUrl":null,"url":null,"abstract":"We describe an approach to characterize the signatures generated by walking humans in spatio-temporal domain. To describe the computational model for this periodic pattern, we take the mathematical theory of geometry group theory, which is widely used in crystallographic structure research. Both empirical and theoretical analyses prove that spatio-temporal helical patterns generated by legs belong to the Frieze Groups because they can be characterized by a repetitive motif along the direction of walking. The theory is applied to an automatic detection-and-tracking system capable of counting heads and handling occlusion by recognizing such patterns. Experimental results for videos acquired from both static and moving ground sensors are presented. Our algorithm demonstrates robustness to non-rigid human deformation as well as background clutter","PeriodicalId":236033,"journal":{"name":"18th International Conference on Pattern Recognition (ICPR'06)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference on Pattern Recognition (ICPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2006.562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

We describe an approach to characterize the signatures generated by walking humans in spatio-temporal domain. To describe the computational model for this periodic pattern, we take the mathematical theory of geometry group theory, which is widely used in crystallographic structure research. Both empirical and theoretical analyses prove that spatio-temporal helical patterns generated by legs belong to the Frieze Groups because they can be characterized by a repetitive motif along the direction of walking. The theory is applied to an automatic detection-and-tracking system capable of counting heads and handling occlusion by recognizing such patterns. Experimental results for videos acquired from both static and moving ground sensors are presented. Our algorithm demonstrates robustness to non-rigid human deformation as well as background clutter
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在空间和时间中寻找步态
我们描述了一种在时空域中描述行走人类产生的特征的方法。为了描述这种周期图案的计算模型,我们采用了广泛应用于晶体结构研究的几何群论的数学理论。实证分析和理论分析都证明,腿部产生的时空螺旋图案属于Frieze群,因为它们的特征是沿着行走方向重复的母基。该理论被应用于一个自动检测和跟踪系统,该系统能够通过识别这种模式来计数头部和处理遮挡。给出了静态和移动地面传感器采集视频的实验结果。我们的算法对非刚性人体变形和背景杂波具有鲁棒性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Segmentation of Human Body Parts Using Deformable Triangulation Noise Variance Adaptive SEA for Motion Estimation: A Two-Stage Schema A Hybrid Recognition Scheme Based on Partially Labeled SOM and MLP A Captcha Mechanism By Exchange Image Blocks Rectification with Intersecting Optical Axes for Stereoscopic Visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1