Jin-kyoung Oh, J. Choi, Dong-Whan Lee, T. Ha, H. Lee
{"title":"45° micro-mirror for out-of-plane coupling of silica-based optical waveguide on si substrate","authors":"Jin-kyoung Oh, J. Choi, Dong-Whan Lee, T. Ha, H. Lee","doi":"10.1109/ISOT.2009.5326153","DOIUrl":null,"url":null,"abstract":"We describe the fabrication and performance of micro-mirror for silica waveguides on silicon substrate. The micro-mirror consists of four facets, which is produced by wet-etching a pyramid-shaped pit on the backside of the Si-substrate and transferring it to silica waveguide by dry-etching. This mirror couples waveguide light normal to waveguide plane. We developed a trench-filled 0.45Δ% Ge-doped borosilicate glass waveguide by flame hydrolysis deposition method to achieve flat surface all over the mirror facet. We observed from scanning electron microscope (SEM) observations that 45° mirror angle and smooth mirror surface is achieved. The propagation loss of the waveguide including the micro-mirror is measured to be 0.1 dB/cm at 1.55 µm wavelength.","PeriodicalId":366216,"journal":{"name":"2009 International Symposium on Optomechatronic Technologies","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Optomechatronic Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISOT.2009.5326153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We describe the fabrication and performance of micro-mirror for silica waveguides on silicon substrate. The micro-mirror consists of four facets, which is produced by wet-etching a pyramid-shaped pit on the backside of the Si-substrate and transferring it to silica waveguide by dry-etching. This mirror couples waveguide light normal to waveguide plane. We developed a trench-filled 0.45Δ% Ge-doped borosilicate glass waveguide by flame hydrolysis deposition method to achieve flat surface all over the mirror facet. We observed from scanning electron microscope (SEM) observations that 45° mirror angle and smooth mirror surface is achieved. The propagation loss of the waveguide including the micro-mirror is measured to be 0.1 dB/cm at 1.55 µm wavelength.