Application of genetic algorithms in the design of robust active filters

M. Lovay, G. Peretti, E. Romero
{"title":"Application of genetic algorithms in the design of robust active filters","authors":"M. Lovay, G. Peretti, E. Romero","doi":"10.1109/EAMTA.2015.7237369","DOIUrl":null,"url":null,"abstract":"This paper presents a genetic algorithm (GA) based method for designing two second-order active filters, proposed as cases of study. The GA must determine the values of the passive components (resistors and capacitors) of each filter in order to obtain a configuration that minimizes the sensitivity to variations of the same and also presents design errors minor to a defined maximum value, with respect to certain specifications. The optimization problem to be addressed by the GA is a multiobjective optimization problem. In both cases of study, the algorithm runs considering two possible scenarios with respect to the component values. The results show that the GA can get in both situations filter configurations that meet the established criteria.","PeriodicalId":101792,"journal":{"name":"2015 Argentine School of Micro-Nanoelectronics, Technology and Applications (EAMTA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Argentine School of Micro-Nanoelectronics, Technology and Applications (EAMTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EAMTA.2015.7237369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a genetic algorithm (GA) based method for designing two second-order active filters, proposed as cases of study. The GA must determine the values of the passive components (resistors and capacitors) of each filter in order to obtain a configuration that minimizes the sensitivity to variations of the same and also presents design errors minor to a defined maximum value, with respect to certain specifications. The optimization problem to be addressed by the GA is a multiobjective optimization problem. In both cases of study, the algorithm runs considering two possible scenarios with respect to the component values. The results show that the GA can get in both situations filter configurations that meet the established criteria.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
遗传算法在鲁棒有源滤波器设计中的应用
本文提出了一种基于遗传算法的二阶有源滤波器设计方法,并以实例进行了研究。遗传算法必须确定每个滤波器的无源元件(电阻器和电容器)的值,以便获得一种配置,使其对相同变化的灵敏度最小化,并根据某些规格提供最小到定义最大值的设计误差。遗传算法要解决的优化问题是一个多目标优化问题。在这两种情况下的研究,算法运行考虑两种可能的情况,相对于组件值。结果表明,在这两种情况下,遗传算法都能得到满足既定条件的滤波器配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurements of the 12 nA low frequency oscillator Commercial CMOS pixel array for beta and gamma radiation particle counting A selectable bandwidth LNA based on current conveyors Design of CMOS APS and floating gate dosimeters Application of genetic algorithms in the design of robust active filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1