On combining alternate test with spatial correlation modeling in analog/RF ICs

K. Huang, Nathan Kupp, J. Carulli, Y. Makris
{"title":"On combining alternate test with spatial correlation modeling in analog/RF ICs","authors":"K. Huang, Nathan Kupp, J. Carulli, Y. Makris","doi":"10.1109/ETS.2013.6569358","DOIUrl":null,"url":null,"abstract":"Statistical intra-die correlation has been extensively studied as a means for reducing test cost in analog/RF ICs. Generally known as alternate test, this approach seeks to predict the performances of an analog/RF chip based on low-cost measurements on the same chip and statistical models learned from a training set of chips. Recently, an orthogonal direction for leveraging statistical correlation towards reducing test cost of analog/RF ICs has also gained traction. Specifically, inter-die spatial correlation models learned from specification tests on a sparse subset of die on a wafer are used to predict performances on the unobserved die. In this work, we investigate the potential of combining these two statistical approaches, anticipating that the performance prediction accuracy of the joint correlation model will surpass the accuracy of its constituents. Experimental results on industrial semiconductor manufacturing data validate this conjecture and corroborate the utility of the combined performance prediction models.","PeriodicalId":118063,"journal":{"name":"2013 18th IEEE European Test Symposium (ETS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th IEEE European Test Symposium (ETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETS.2013.6569358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Statistical intra-die correlation has been extensively studied as a means for reducing test cost in analog/RF ICs. Generally known as alternate test, this approach seeks to predict the performances of an analog/RF chip based on low-cost measurements on the same chip and statistical models learned from a training set of chips. Recently, an orthogonal direction for leveraging statistical correlation towards reducing test cost of analog/RF ICs has also gained traction. Specifically, inter-die spatial correlation models learned from specification tests on a sparse subset of die on a wafer are used to predict performances on the unobserved die. In this work, we investigate the potential of combining these two statistical approaches, anticipating that the performance prediction accuracy of the joint correlation model will surpass the accuracy of its constituents. Experimental results on industrial semiconductor manufacturing data validate this conjecture and corroborate the utility of the combined performance prediction models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟/射频集成电路中交替测试与空间相关建模相结合的研究
统计内模相关性作为降低模拟/射频集成电路测试成本的一种手段已被广泛研究。这种方法通常被称为替代测试,旨在基于同一芯片上的低成本测量和从芯片训练集学习的统计模型来预测模拟/射频芯片的性能。最近,利用统计相关性来降低模拟/射频ic测试成本的正交方向也得到了关注。具体来说,从晶圆片上的稀疏子集的规格测试中学习到的模具间空间相关模型用于预测未观察到的模具上的性能。在这项工作中,我们研究了结合这两种统计方法的潜力,预计联合相关模型的性能预测精度将超过其组成部分的精度。工业半导体制造数据的实验结果验证了这一猜想,并证实了组合性能预测模型的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental evaluation of thread distribution effects on multiple output errors in GPUs A layout-aware x-filling approach for dynamic power supply noise reduction in at-speed scan testing RF BIST and test strategy for the receive part of an RF transceiver in CMOS technology Current testing: Dead or alive? Efficient fault simulation through dynamic binary translation for dependability analysis of embedded software
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1