C25. Digital signal classification by compressed cyclostationary features

S. El Khamy, Amr El Helw, A. Mahdy
{"title":"C25. Digital signal classification by compressed cyclostationary features","authors":"S. El Khamy, Amr El Helw, A. Mahdy","doi":"10.1109/NRSC.2012.6208543","DOIUrl":null,"url":null,"abstract":"Different classifiers have been adapted for classification of digital signals in low SNR environments in many researches. For efficient performance of signals classifiers and features detectors in real time, limited number of features are required. In this paper we introduce a method to compress the cyclostationary features of digital signals using Discrete Wavelet Transform (DWT). The target is to reach low percentage of classification error with reducing the number of features required. Using the proposed technique, different types of digital signals as BPSK and QPSK signals in three different cognitive radio scenarios have been considered. Simulation results show that the proposed technique can achieve classification accuracy up to 97% with a reduction percentage of 87.5% in the utilized features.","PeriodicalId":109281,"journal":{"name":"2012 29th National Radio Science Conference (NRSC)","volume":"138 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 29th National Radio Science Conference (NRSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRSC.2012.6208543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Different classifiers have been adapted for classification of digital signals in low SNR environments in many researches. For efficient performance of signals classifiers and features detectors in real time, limited number of features are required. In this paper we introduce a method to compress the cyclostationary features of digital signals using Discrete Wavelet Transform (DWT). The target is to reach low percentage of classification error with reducing the number of features required. Using the proposed technique, different types of digital signals as BPSK and QPSK signals in three different cognitive radio scenarios have been considered. Simulation results show that the proposed technique can achieve classification accuracy up to 97% with a reduction percentage of 87.5% in the utilized features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
这件。基于压缩循环平稳特征的数字信号分类
在许多研究中,采用了不同的分类器对低信噪比环境下的数字信号进行分类。为了保证信号分类器和特征检测器的实时性能,需要的特征数量是有限的。本文介绍了一种利用离散小波变换(DWT)对数字信号进行循环平稳特征压缩的方法。目标是通过减少所需特征的数量来达到较低的分类错误率。利用所提出的技术,考虑了三种不同认知无线电场景下不同类型的数字信号作为BPSK和QPSK信号。仿真结果表明,该方法的分类准确率高达97%,所利用的特征减少率为87.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
K4. Gene network construction and pathways analysis for high throughput microarrays D4. Monte Carlo simulation of single electronics based on orthodox theory C34. Enhanced blind, adaptive channel shortening for multi-carrier systems C46. Robust beamforming in multi-users cognitive radio system D2. Simplified analytical iterations for electron wavefunction using self-consistent solution for nm MOS gate stacks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1