J. Lotz, Andreas Vogelsang, Ola Benderius, C. Berger
{"title":"Microservice Architectures for Advanced Driver Assistance Systems: A Case-Study","authors":"J. Lotz, Andreas Vogelsang, Ola Benderius, C. Berger","doi":"10.1109/ICSA-C.2019.00016","DOIUrl":null,"url":null,"abstract":"The technological advancements of recent years have steadily increased the complexity of vehicle-internal software systems, and the ongoing development towards autonomous driving will further aggravate this situation. This is leading to a level of complexity that is pushing the limits of existing vehicle software architectures and system designs. By changing the software structure to a service-based architecture, companies in other domains successfully managed the rising complexity and created a more agile and future-oriented development process. This paper presents a case-study investigating the feasibility and possible effects of changing the software architecture for a complex driver assistance function to a microservice architecture. The complete procedure is described, starting with the description of the software-environment and the corresponding requirements, followed by the implementation, and the final testing. In addition, this paper provides a high-level evaluation of the microservice architecture for the automotive use-case. The results show that microservice architectures can reduce complexity and time-consuming process steps and make the automotive software systems prepared for upcoming challenges as long as the principles of microservice architectures are carefully followed.","PeriodicalId":239999,"journal":{"name":"2019 IEEE International Conference on Software Architecture Companion (ICSA-C)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Software Architecture Companion (ICSA-C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSA-C.2019.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
The technological advancements of recent years have steadily increased the complexity of vehicle-internal software systems, and the ongoing development towards autonomous driving will further aggravate this situation. This is leading to a level of complexity that is pushing the limits of existing vehicle software architectures and system designs. By changing the software structure to a service-based architecture, companies in other domains successfully managed the rising complexity and created a more agile and future-oriented development process. This paper presents a case-study investigating the feasibility and possible effects of changing the software architecture for a complex driver assistance function to a microservice architecture. The complete procedure is described, starting with the description of the software-environment and the corresponding requirements, followed by the implementation, and the final testing. In addition, this paper provides a high-level evaluation of the microservice architecture for the automotive use-case. The results show that microservice architectures can reduce complexity and time-consuming process steps and make the automotive software systems prepared for upcoming challenges as long as the principles of microservice architectures are carefully followed.