Computing curvilinear structure by token-based grouping

J. Dolan, E. Riseman
{"title":"Computing curvilinear structure by token-based grouping","authors":"J. Dolan, E. Riseman","doi":"10.1109/CVPR.1992.223265","DOIUrl":null,"url":null,"abstract":"A computational framework for computing curvilinear structure on the edge data of images is presented. The method is symbolic, operating on geometric entities/tokens. It is also constructive, hierarchical, parallel, and locally distributed. Computation proceeds independently at each token and at each stage interleaves the discovery of structure with its careful description. The process yields a hierarchy of descriptions at multiple scales. These multiscale descriptions provide efficient feature indexing both for the grouping process itself as well as for subsequent recognition processes. Experimental results are presented to demonstrate the effectiveness of the approach with respect to curvilinear structure, and its application to more general grouping problems is discussed.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

A computational framework for computing curvilinear structure on the edge data of images is presented. The method is symbolic, operating on geometric entities/tokens. It is also constructive, hierarchical, parallel, and locally distributed. Computation proceeds independently at each token and at each stage interleaves the discovery of structure with its careful description. The process yields a hierarchy of descriptions at multiple scales. These multiscale descriptions provide efficient feature indexing both for the grouping process itself as well as for subsequent recognition processes. Experimental results are presented to demonstrate the effectiveness of the approach with respect to curvilinear structure, and its application to more general grouping problems is discussed.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于令牌分组的曲线结构计算
提出了一种基于图像边缘数据计算曲线结构的计算框架。该方法是符号化的,对几何实体/标记进行操作。它也是建设性的、分层的、并行的和局部分布的。计算在每个标记上独立进行,并且在每个阶段将结构的发现与其仔细描述交织在一起。该过程在多个尺度上产生描述的层次结构。这些多尺度描述为分组过程本身以及随后的识别过程提供了有效的特征索引。实验结果证明了该方法对曲线结构的有效性,并讨论了其在更一般的分组问题中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion trajectories An heterogeneous M-SIMD architecture for Kalman filter controlled processing of image sequences Recognizing 3D objects from 2D images: an error analysis On the derivation of geometric constraints in stereo Computing stereo correspondences in the presence of narrow occluding objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1