Uncertainty quantification of EM-circuit systems using stochastic polynomial chaos method

Ping Li, L. J. Jiang
{"title":"Uncertainty quantification of EM-circuit systems using stochastic polynomial chaos method","authors":"Ping Li, L. J. Jiang","doi":"10.1109/ISEMC.2014.6899090","DOIUrl":null,"url":null,"abstract":"Uncertainties in realistic lumped and distributive circuit systems are of great importance to today's high yield manufacture demand. However, evaluating the stochastic effect in the time domain for the hybrid electromagnetics (EM)-circuit system was seldom done, especially when Monte Carlo is too expensive to be feasible. In this work, an adaptive hierarchical sparse grid collocation (ASGC) method is presented to quantify the impacts of stochastic inputs on hybrid electromagnetics (EM)-circuit or EM scattering systems. The ASGC method approximates the stochastic observables of interest using interpolation functions over series collocation points. Instead of employing a full-tensor product sense, the collocation points in ASGC method are hierarchically marched with interpolation depth based upon Smolyaks construction algorithm. To further reduce the collocation points, an adaptive scheme is employed by using hierarchical surplus of each collocation point as the error indicator. With the proposed method, the number of collocation points is significantly deduced. To verify the effectiveness and robustness of the proposed stochastic solver, hybrid EM-circuit systems are quantified by a full-wave EM-circuit simulator based upon discontinuous Galerkin time domain (DGTD) method and modified nodal analysis (MNA). The time domain influences of uncertainty inputs such as geometrical information and electrical material properties are thereby benchmarked and demonstrated through this paper.","PeriodicalId":279929,"journal":{"name":"2014 IEEE International Symposium on Electromagnetic Compatibility (EMC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Electromagnetic Compatibility (EMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISEMC.2014.6899090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Uncertainties in realistic lumped and distributive circuit systems are of great importance to today's high yield manufacture demand. However, evaluating the stochastic effect in the time domain for the hybrid electromagnetics (EM)-circuit system was seldom done, especially when Monte Carlo is too expensive to be feasible. In this work, an adaptive hierarchical sparse grid collocation (ASGC) method is presented to quantify the impacts of stochastic inputs on hybrid electromagnetics (EM)-circuit or EM scattering systems. The ASGC method approximates the stochastic observables of interest using interpolation functions over series collocation points. Instead of employing a full-tensor product sense, the collocation points in ASGC method are hierarchically marched with interpolation depth based upon Smolyaks construction algorithm. To further reduce the collocation points, an adaptive scheme is employed by using hierarchical surplus of each collocation point as the error indicator. With the proposed method, the number of collocation points is significantly deduced. To verify the effectiveness and robustness of the proposed stochastic solver, hybrid EM-circuit systems are quantified by a full-wave EM-circuit simulator based upon discontinuous Galerkin time domain (DGTD) method and modified nodal analysis (MNA). The time domain influences of uncertainty inputs such as geometrical information and electrical material properties are thereby benchmarked and demonstrated through this paper.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用随机多项式混沌方法定量电磁电路系统的不确定性
现实的集总和分配电路系统中的不确定性对当今的高产量制造需求具有重要意义。然而,很少对混合电磁电路系统的时域随机效应进行评估,特别是在蒙特卡罗方法过于昂贵而不可行的情况下。本文提出了一种自适应分层稀疏网格配置(ASGC)方法来量化随机输入对混合电磁(EM)电路或EM散射系统的影响。ASGC方法利用序列配点上的插值函数逼近感兴趣的随机观测值。ASGC方法不采用全张量积感知,而是基于Smolyaks构造算法,按插值深度分层排列配点。为了进一步减少搭配点,采用了一种自适应方案,将每个搭配点的分层剩余量作为误差指标。采用该方法,可以显著地推导出配点数。为了验证该随机求解器的有效性和鲁棒性,利用基于间断伽辽金时域(DGTD)方法和修正节点分析(MNA)的全波电磁电路模拟器对混合电磁电路系统进行了量化。不确定性输入的时域影响,如几何信息和电材料的性质,从而通过本文基准和演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of emission source microscopy technique to EMI source localization above 5 GHz Modeling of carbon nanotube-metal contact losses in electronic devices Integrated-circuit countermeasures against information leakage through EM radiation Over-the-air performance testing of a real 4G LTE base station in a reverberation chamber A common-mode active filter in a compact package for a switching mode power supply
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1