A Partitioning GPU-based Algorithm for Processing the k Nearest-Neighbor Query

Polychronis Velentzas, M. Vassilakopoulos, A. Corral
{"title":"A Partitioning GPU-based Algorithm for Processing the k Nearest-Neighbor Query","authors":"Polychronis Velentzas, M. Vassilakopoulos, A. Corral","doi":"10.1145/3415958.3433071","DOIUrl":null,"url":null,"abstract":"The k Nearest-Neighbor (k-NN) query is a common spatial query that appears in several big data applications. Typically, GPU devices have much larger numbers of processing cores than CPUs and faster device memory than main memory accessed by CPUs, thus, providing higher computing power. We propose and implement a new GPU-based partitioning algorithm for the k-NN query, using the CUDA runtime API. Due to partitioning, this algorithm avoids calculating distances for the whole dataset. Using synthetic and real datasets, we present an extensive experimental performance comparison against six existing algorithms. These algorithms are based on calculating distances for the whole in-memory dataset. This comparison shows that the new algorithm excels in all the conducted experiments and outperforms these six algorithms.","PeriodicalId":198419,"journal":{"name":"Proceedings of the 12th International Conference on Management of Digital EcoSystems","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 12th International Conference on Management of Digital EcoSystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3415958.3433071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The k Nearest-Neighbor (k-NN) query is a common spatial query that appears in several big data applications. Typically, GPU devices have much larger numbers of processing cores than CPUs and faster device memory than main memory accessed by CPUs, thus, providing higher computing power. We propose and implement a new GPU-based partitioning algorithm for the k-NN query, using the CUDA runtime API. Due to partitioning, this algorithm avoids calculating distances for the whole dataset. Using synthetic and real datasets, we present an extensive experimental performance comparison against six existing algorithms. These algorithms are based on calculating distances for the whole in-memory dataset. This comparison shows that the new algorithm excels in all the conducted experiments and outperforms these six algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分区gpu的k近邻查询处理算法
k近邻查询(k- nn)是一种常见的空间查询,出现在很多大数据应用中。通常情况下,GPU设备的处理核数比cpu大得多,设备内存比cpu访问的主存快得多,因此可以提供更高的计算能力。我们提出并实现了一种新的基于gpu的k-NN查询分区算法,使用CUDA运行时API。由于分区,该算法避免了计算整个数据集的距离。使用合成和真实数据集,我们对六种现有算法进行了广泛的实验性能比较。这些算法是基于计算整个内存数据集的距离。对比表明,新算法在所有的实验中都表现优异,优于这六种算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Selection of Information Streams in Social Sensing: an Interdependence- and Cost-aware Ranking Method LEOnto Bot-Detective: An explainable Twitter bot detection service with crowdsourcing functionalities A Novel Framework for Event Interpretation in a Heterogeneous Information System Spatial Information Retrieval in Digital Ecosystems: A Comprehensive Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1