The learning behavior of single neuron classifiers on linearly separable or nonseparable input

M. Basu, T. Ho
{"title":"The learning behavior of single neuron classifiers on linearly separable or nonseparable input","authors":"M. Basu, T. Ho","doi":"10.1109/IJCNN.1999.831142","DOIUrl":null,"url":null,"abstract":"Determining linear separability is an important way of understanding structures present in data. We explore the behavior of several classical descent procedures for determining linear separability and training linear classifiers in the presence of linearly nonseparable input. We compare the adaptive procedures to linear programming methods using many pairwise discrimination problems from a public database. We found that the adaptive procedures have serious implementation problems which make them less preferable than linear programming.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.831142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

Determining linear separability is an important way of understanding structures present in data. We explore the behavior of several classical descent procedures for determining linear separability and training linear classifiers in the presence of linearly nonseparable input. We compare the adaptive procedures to linear programming methods using many pairwise discrimination problems from a public database. We found that the adaptive procedures have serious implementation problems which make them less preferable than linear programming.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单神经元分类器在线性可分和不可分输入下的学习行为
确定线性可分性是理解数据结构的重要途径。我们探讨了在线性不可分输入存在的情况下,确定线性可分性和训练线性分类器的几个经典下降过程的行为。我们将自适应过程与线性规划方法进行了比较,使用了来自公共数据库的许多成对判别问题。我们发现自适应过程有严重的实现问题,这使得它们不如线性规划好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1