{"title":"Control Mechanisms for Residential Electricity Demand in SmartGrids","authors":"S. Kishore, L. Snyder","doi":"10.1109/SMARTGRID.2010.5622084","DOIUrl":null,"url":null,"abstract":"We consider mechanisms to optimize electricity consumption both within a home and across multiple homes in a neighborhood. The homes are assumed to use energy management controllers (EMCs) to control the operation of some of their appliances. EMCs, which are a feature of the emerging SmartGrid, use both prices and user preferences to control power usage across the home. We first present a simple optimization model for determining the timing of appliance operation to take advantage of lower electricity rates during off-peak periods. We then demonstrate, using simulation, that the resulting solution may in fact be more peaky than the ``non-scheduled'' solution, thereby negating some of the benefits (for the utility) of off-peak pricing models. We then propose a distributed scheduling mechanism to reduce peak demand within a neighborhood of homes. The mechanism provides homes a guaranteed base level of power and allows them to compete for additional power to meet their needs. Finally, we introduce a more powerful EMC optimization model, based on dynamic programming, which, unlike our first optimization model, accounts for the potential for electricity capacity constraints.","PeriodicalId":106908,"journal":{"name":"2010 First IEEE International Conference on Smart Grid Communications","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"158","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 First IEEE International Conference on Smart Grid Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTGRID.2010.5622084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 158
Abstract
We consider mechanisms to optimize electricity consumption both within a home and across multiple homes in a neighborhood. The homes are assumed to use energy management controllers (EMCs) to control the operation of some of their appliances. EMCs, which are a feature of the emerging SmartGrid, use both prices and user preferences to control power usage across the home. We first present a simple optimization model for determining the timing of appliance operation to take advantage of lower electricity rates during off-peak periods. We then demonstrate, using simulation, that the resulting solution may in fact be more peaky than the ``non-scheduled'' solution, thereby negating some of the benefits (for the utility) of off-peak pricing models. We then propose a distributed scheduling mechanism to reduce peak demand within a neighborhood of homes. The mechanism provides homes a guaranteed base level of power and allows them to compete for additional power to meet their needs. Finally, we introduce a more powerful EMC optimization model, based on dynamic programming, which, unlike our first optimization model, accounts for the potential for electricity capacity constraints.