A Best-First Search Algorithm for FOND Planning and Heuristic Functions to Optimize Decompressed Solution Size

Frederico Messa, A. Pereira
{"title":"A Best-First Search Algorithm for FOND Planning and Heuristic Functions to Optimize Decompressed Solution Size","authors":"Frederico Messa, A. Pereira","doi":"10.1609/icaps.v33i1.27205","DOIUrl":null,"url":null,"abstract":"In this work, we study fully-observable non-deterministic (FOND) planning, which models uncertainty through actions with non-deterministic effects. We present a best-first heuristic search algorithm called AND* that searches the policy-space of the FOND task to find a solution policy. We generalize the concepts of optimality, admissibility, and goal-awareness for FOND. Using these new concepts, we formalize the concept of heuristic functions that can guide a policy-space search. We analyze different aspects of the general structure of FOND solutions to introduce and characterize a set of FOND heuristics that estimate how far a policy is from becoming a solution. One of these heuristics applies a novel insight. Guided by them AND* returns only solutions with the minimal possible number of mapped states. We systematically study these FOND heuristics theoretically and empirically. We observe that our best heuristic makes AND* much more effective than the straightforward heuristics. We believe that our work allows a better understanding of how to design algorithms and heuristics to solve FOND tasks.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v33i1.27205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we study fully-observable non-deterministic (FOND) planning, which models uncertainty through actions with non-deterministic effects. We present a best-first heuristic search algorithm called AND* that searches the policy-space of the FOND task to find a solution policy. We generalize the concepts of optimality, admissibility, and goal-awareness for FOND. Using these new concepts, we formalize the concept of heuristic functions that can guide a policy-space search. We analyze different aspects of the general structure of FOND solutions to introduce and characterize a set of FOND heuristics that estimate how far a policy is from becoming a solution. One of these heuristics applies a novel insight. Guided by them AND* returns only solutions with the minimal possible number of mapped states. We systematically study these FOND heuristics theoretically and empirically. We observe that our best heuristic makes AND* much more effective than the straightforward heuristics. We believe that our work allows a better understanding of how to design algorithms and heuristics to solve FOND tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种最佳优先搜索算法的FOND规划和启发式函数优化解压缩大小
在这项工作中,我们研究了完全可观察的非确定性(FOND)规划,它通过具有非确定性影响的行为来模拟不确定性。提出了一种最优优先启发式搜索算法AND*,该算法通过搜索FOND任务的策略空间来寻找策略解。我们概括了最优性、可接受性和目标意识的概念。使用这些新概念,我们形式化了启发式函数的概念,启发式函数可以指导策略空间搜索。我们分析了FOND解决方案一般结构的不同方面,以介绍和描述一组FOND启发式方法,这些启发式方法可以估计策略与解决方案之间的距离。其中一种启发式方法应用了一种新颖的见解。在它们的指导下,AND*只返回具有尽可能少的映射状态的解。我们从理论和经验两方面对这些启发式方法进行了系统的研究。我们观察到,我们最好的启发式使AND*比直接启发式更有效。我们相信我们的工作可以更好地理解如何设计算法和启发式来解决FOND任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1