Accuracy of endoscopic capsule localization using position bounds on smoothed path loss based WCL

Umma Hany, L. Akter
{"title":"Accuracy of endoscopic capsule localization using position bounds on smoothed path loss based WCL","authors":"Umma Hany, L. Akter","doi":"10.1109/ICSIPA.2017.8120673","DOIUrl":null,"url":null,"abstract":"Accurate localization of Wireless video capsule endoscope (VCE) is a crucial requirement for proper diagnosis of intestinal abnormalities. A major challenge in RF based localization is the shadow fading and multi-path propagation effects of non-homogeneous medium of human body which causes high random deviations in the measured path loss resulting in high localization error. To address the randomness issue of the scattered path loss, we propose Savitzky-Golay filtering to estimate the smoothed path loss. Then we estimate the positions of the moving capsule using weighted centroid localization (WCL) algorithm by finding the weighted average of the sensor's position. We compute the weight of the sensor receivers position using degree based estimated smoothed path loss. Finally, we propose two position bounds on the estimated positions to improve the accuracy of localization and verify the accuracy using different performance metrics. To validate our proposed algorithm, we develop a simulation platform using MATLAB and observe significant improvement over the literature using our proposed position bounded smoothed path loss based WCL without any prior knowledge of channel parameters or distance.","PeriodicalId":268112,"journal":{"name":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Signal and Image Processing Applications (ICSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2017.8120673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Accurate localization of Wireless video capsule endoscope (VCE) is a crucial requirement for proper diagnosis of intestinal abnormalities. A major challenge in RF based localization is the shadow fading and multi-path propagation effects of non-homogeneous medium of human body which causes high random deviations in the measured path loss resulting in high localization error. To address the randomness issue of the scattered path loss, we propose Savitzky-Golay filtering to estimate the smoothed path loss. Then we estimate the positions of the moving capsule using weighted centroid localization (WCL) algorithm by finding the weighted average of the sensor's position. We compute the weight of the sensor receivers position using degree based estimated smoothed path loss. Finally, we propose two position bounds on the estimated positions to improve the accuracy of localization and verify the accuracy using different performance metrics. To validate our proposed algorithm, we develop a simulation platform using MATLAB and observe significant improvement over the literature using our proposed position bounded smoothed path loss based WCL without any prior knowledge of channel parameters or distance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于WCL的平滑路径损失的位置边界内镜囊定位精度
无线视频胶囊内窥镜(VCE)的准确定位是正确诊断肠道异常的重要要求。射频定位的主要挑战是人体非均匀介质的阴影衰落和多径传播效应,导致测量的路径损耗存在较大的随机偏差,从而导致定位误差较大。为了解决散射路径损失的随机性问题,我们提出了Savitzky-Golay滤波来估计平滑路径损失。然后通过对传感器位置的加权平均,利用加权质心定位算法估计运动胶囊的位置。我们使用基于度的估计平滑路径损耗来计算传感器接收器位置的权重。最后,我们在估计的位置上提出了两个位置边界,以提高定位的精度,并使用不同的性能指标验证定位的精度。为了验证我们提出的算法,我们使用MATLAB开发了一个仿真平台,并在没有任何信道参数或距离先验知识的情况下,使用我们提出的基于位置有界平滑路径损失的WCL,观察到比文献有显著改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhanced forensic speaker verification using multi-run ICA in the presence of environmental noise and reverberation conditions A real-time multi-class multi-object tracker using YOLOv2 Hybrid neural network and regression tree ensemble pruned by simulated annealing for virtual flow metering application Hybrid DWT and MFCC feature warping for noisy forensic speaker verification in room reverberation A deep architecture for face recognition based on multiple feature extraction techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1