On Parzen windows classifiers

Jing Peng, G. Seetharaman
{"title":"On Parzen windows classifiers","authors":"Jing Peng, G. Seetharaman","doi":"10.1109/AIPR.2014.7041924","DOIUrl":null,"url":null,"abstract":"Parzen Windows classifiers have been applied to a variety of density estimation as well as classification tasks with considerable success. Parzen Windows are known to converge in the asymptotic limit. However, there is a lack of theoretical analysis on their performance with finite samples. In this paper we show a connection between Parzen Windows and the regularized least squares algorithm, which has a well-established foundation in computational learning theory. This connection allows us to provide useful insight into Parzen Windows classifiers and their performance in finite sample settings. Finally, we show empirical results on the performance of Parzen Windows classifiers using a number of real data sets.","PeriodicalId":210982,"journal":{"name":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2014.7041924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Parzen Windows classifiers have been applied to a variety of density estimation as well as classification tasks with considerable success. Parzen Windows are known to converge in the asymptotic limit. However, there is a lack of theoretical analysis on their performance with finite samples. In this paper we show a connection between Parzen Windows and the regularized least squares algorithm, which has a well-established foundation in computational learning theory. This connection allows us to provide useful insight into Parzen Windows classifiers and their performance in finite sample settings. Finally, we show empirical results on the performance of Parzen Windows classifiers using a number of real data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在Parzen窗口分类器上
Parzen Windows分类器已经应用于各种密度估计和分类任务,并取得了相当大的成功。已知Parzen窗口在渐近极限下收敛。然而,对于它们在有限样本下的性能,目前还缺乏理论分析。在本文中,我们展示了Parzen窗口和正则化最小二乘算法之间的联系,这在计算学习理论中有着良好的基础。这种联系使我们能够对Parzen Windows分类器及其在有限样本设置中的性能提供有用的见解。最后,我们使用大量真实数据集展示了Parzen Windows分类器性能的实证结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning tree-structured approximations for conditional random fields Multi-resolution deblurring High dynamic range (HDR) video processing for the exploitation of high bit-depth sensors in human-monitored surveillance Extension of no-reference deblurring methods through image fusion 3D sparse point reconstructions of atmospheric nuclear detonations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1