A new combined system using ANN and complex wavelet transform for tissue density classification in mammography images

H. Yaşar, Uğurhan Kutbay, F. Hardalaç
{"title":"A new combined system using ANN and complex wavelet transform for tissue density classification in mammography images","authors":"H. Yaşar, Uğurhan Kutbay, F. Hardalaç","doi":"10.1109/CATA.2018.8398679","DOIUrl":null,"url":null,"abstract":"Breast cancer is the most common type of cancer that occurs in one of every eight women in the world and is the most common in women. Early diagnosis of the disease is of great importance in order to reduce tissue loss and disease-related deaths. For this reason, in the literature, many studies have been done such as automatic breast tissue density classification, automatic normal-abnormal tissue classification and automatic benign-malignant tissue classification. In this study, a new combined system based on artificial neural networks (ANN) and complex wavelet transform is proposed to classify tissue density from mammography images. The study using 322 images of the MIAS database have resulted in classification success rates ranging from 80% to 94.79% for different breast tissue density classes (fatty, fatty-glandular, dense-glandular).","PeriodicalId":231024,"journal":{"name":"2018 4th International Conference on Computer and Technology Applications (ICCTA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Computer and Technology Applications (ICCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CATA.2018.8398679","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Breast cancer is the most common type of cancer that occurs in one of every eight women in the world and is the most common in women. Early diagnosis of the disease is of great importance in order to reduce tissue loss and disease-related deaths. For this reason, in the literature, many studies have been done such as automatic breast tissue density classification, automatic normal-abnormal tissue classification and automatic benign-malignant tissue classification. In this study, a new combined system based on artificial neural networks (ANN) and complex wavelet transform is proposed to classify tissue density from mammography images. The study using 322 images of the MIAS database have resulted in classification success rates ranging from 80% to 94.79% for different breast tissue density classes (fatty, fatty-glandular, dense-glandular).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络和复小波变换的乳腺x线图像组织密度分类新方法
乳腺癌是最常见的癌症,世界上每8名女性中就有1人患乳腺癌,是女性中最常见的癌症。为了减少组织损失和与疾病相关的死亡,疾病的早期诊断非常重要。为此,文献中进行了乳腺组织密度自动分类、正常与异常组织自动分类、良性与恶性组织自动分类等研究。本文提出了一种基于人工神经网络(ANN)和复小波变换的乳腺x线图像组织密度分类方法。该研究使用了MIAS数据库的322张图像,对不同的乳腺组织密度类别(脂肪、脂肪腺、致密腺)的分类成功率从80%到94.79%不等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of pornographic content on Twitter using support vector machine and Naive Bayes Concepts extraction in ontology learning using language patterns for better accuracy Automatically generate a specific human computer interaction from an interface diagram model The Triple Helix Model: University-industry-governments linkage web-based application recommendation systems for emerging commercial-base research State of the art of telepresence with a virtual reality headset
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1