Optimal wavelet features for an infrared satellite precipitation estimate algorithm

Majid Mahrooghy, V. Anantharaj, N. Younan, J. Aanstoos
{"title":"Optimal wavelet features for an infrared satellite precipitation estimate algorithm","authors":"Majid Mahrooghy, V. Anantharaj, N. Younan, J. Aanstoos","doi":"10.1109/AIPR.2010.5759702","DOIUrl":null,"url":null,"abstract":"A satellite precipitation estimation algorithm based on wavelet features is investigated to find the optimal wavelet features in terms of wavelet family and sliding window size. In this work, the infrared satellite based images along with ground gauge (radar corrected) observations are used for the retrieval rainfall. The goal of this work is to find an optimal wavelet transform to represent better features for cloud classification and rainfall estimation. Our approach involves the following four steps: 1) segmentation of infrared cloud images into patches; 2) feature extraction using a wavelet-based method; 3) clustering and classification of cloud patches using neural network, and 4) dynamic application of brightness temperature (Tb) and rain rate relationships, derived using satellite observations. The results show that Haar and Symlet wavelets with sliding window size 5×5 have better estimate performance than other wavelet families and window sizes.","PeriodicalId":128378,"journal":{"name":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 39th Applied Imagery Pattern Recognition Workshop (AIPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIPR.2010.5759702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A satellite precipitation estimation algorithm based on wavelet features is investigated to find the optimal wavelet features in terms of wavelet family and sliding window size. In this work, the infrared satellite based images along with ground gauge (radar corrected) observations are used for the retrieval rainfall. The goal of this work is to find an optimal wavelet transform to represent better features for cloud classification and rainfall estimation. Our approach involves the following four steps: 1) segmentation of infrared cloud images into patches; 2) feature extraction using a wavelet-based method; 3) clustering and classification of cloud patches using neural network, and 4) dynamic application of brightness temperature (Tb) and rain rate relationships, derived using satellite observations. The results show that Haar and Symlet wavelets with sliding window size 5×5 have better estimate performance than other wavelet families and window sizes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
红外卫星降水估计算法的最优小波特征
研究了一种基于小波特征的卫星降水估计算法,从小波族和滑动窗口大小两个方面寻找最优的小波特征。在这项工作中,基于红外卫星的图像以及地面测量(雷达校正)观测用于检索降雨量。这项工作的目标是找到一个最佳的小波变换来表示云分类和降雨估计的更好的特征。我们的方法包括以下四个步骤:1)将红外云图分割成小块;2)基于小波的特征提取方法;3)利用神经网络对云块进行聚类和分类;4)利用卫星观测数据推导出的亮度温度(Tb)和雨率关系的动态应用。结果表明,具有滑动窗口大小5×5的Haar和Symlet小波比其他小波族和窗口大小具有更好的估计性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated cross-sensor registration, orthorectification and geopositioning using LIDAR digital elevation models Gray-level co-occurrence matrices as features in edge enhanced images Rock image segmentation using watershed with shape markers Adaptive selection of visual and infra-red image fusion rules Tactical geospatial intelligence from full motion video
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1