Multilevel optimization control for large-scale systems using genetic algorithms

E.E. EL Mdbouly, A. Ibrahim, G. Z. El-Far, M. El Nassef
{"title":"Multilevel optimization control for large-scale systems using genetic algorithms","authors":"E.E. EL Mdbouly, A. Ibrahim, G. Z. El-Far, M. El Nassef","doi":"10.1109/ICEEC.2004.1374419","DOIUrl":null,"url":null,"abstract":"This paper presents a modijied approach to design multilevel controllers using structural perturbation technique for large-scale systems based on genetic algorithms. The powerful capabilities of genetic algorithms in locating the optimal solution to a given optimization problem are exploited to determine the parameters of the controller in order to meet specijied performance objectives. The proposed approach is based on obtaining local feedback controller for each subsystem in the first level by ignoring the interaction, and then a global controller at the second level provides corrective signals to neutralize the interaction effects. The proposed control approach is used successfully to control the behaviour of a two-area power system. Simulation results are presented to illustrate the effectiveness of the proposed control approach compared to traditional method Index Terms Genetic algorithm, Large-scale systems, Optimization, Multilevel control","PeriodicalId":180043,"journal":{"name":"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electrical, Electronic and Computer Engineering, 2004. ICEEC '04.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEC.2004.1374419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a modijied approach to design multilevel controllers using structural perturbation technique for large-scale systems based on genetic algorithms. The powerful capabilities of genetic algorithms in locating the optimal solution to a given optimization problem are exploited to determine the parameters of the controller in order to meet specijied performance objectives. The proposed approach is based on obtaining local feedback controller for each subsystem in the first level by ignoring the interaction, and then a global controller at the second level provides corrective signals to neutralize the interaction effects. The proposed control approach is used successfully to control the behaviour of a two-area power system. Simulation results are presented to illustrate the effectiveness of the proposed control approach compared to traditional method Index Terms Genetic algorithm, Large-scale systems, Optimization, Multilevel control
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于遗传算法的大型系统多级优化控制
本文提出了一种基于遗传算法的结构摄动技术设计大型系统多级控制器的改进方法。利用遗传算法在给定优化问题中找到最优解的强大能力来确定控制器的参数,以满足指定的性能目标。该方法首先通过忽略相互作用获得第一层各子系统的局部反馈控制器,然后在第二层利用全局控制器提供校正信号来抵消相互作用的影响。所提出的控制方法已成功地用于两区电力系统的行为控制。仿真结果表明,与传统控制方法相比,所提出的控制方法是有效的
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study of superconducting microstrip line using transverse resonance technique Sensitivity of radial-basis networks to single-example decision classes Comparison of branch prediction schemes for superscalar processors ICEEC 2004 Integrator frequency synthesizer Fuzzy logic control of the mean arterial pressure of ICu patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1