Application of multi-zero artificial neural network to the design of an m-valued digital multiplier

Chia-Lun J. Hu
{"title":"Application of multi-zero artificial neural network to the design of an m-valued digital multiplier","authors":"Chia-Lun J. Hu","doi":"10.1109/ISMVL.1991.130701","DOIUrl":null,"url":null,"abstract":"An M-ary digital multiplier using artificial multi-zero neural networks and elementary analog arithmetic units has been derived. This multiplier should be accurate because its main arithmetic process is digital, while the speed should be very high because it is a free-running, parallel, and M-ary operation. The multi-zero neural network is a feedback artificial neural system consisting of N neurons. Each neuron is a nonlinear amplifier with input-output response function equal to a polynomial function containing 2M+1 real zeros. A unique property possessed by this nonlinear feedback system is that if the connection matrix is programmed correctly, any N-bit analog input vector will always be converged to an N-bit M-valued digital vector at the output. This output will be locked-in in place (or it can be memorized) even when the input is removed.<<ETX>>","PeriodicalId":127974,"journal":{"name":"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the Twenty-First International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.1991.130701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

An M-ary digital multiplier using artificial multi-zero neural networks and elementary analog arithmetic units has been derived. This multiplier should be accurate because its main arithmetic process is digital, while the speed should be very high because it is a free-running, parallel, and M-ary operation. The multi-zero neural network is a feedback artificial neural system consisting of N neurons. Each neuron is a nonlinear amplifier with input-output response function equal to a polynomial function containing 2M+1 real zeros. A unique property possessed by this nonlinear feedback system is that if the connection matrix is programmed correctly, any N-bit analog input vector will always be converged to an N-bit M-valued digital vector at the output. This output will be locked-in in place (or it can be memorized) even when the input is removed.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多零人工神经网络在m值数字乘法器设计中的应用
利用人工多零神经网络和初等模拟算术单元,推导了一种m进数字乘法器。这个乘法器应该是精确的,因为它的主要算术过程是数字的,而速度应该非常高,因为它是一个自由运行的、并行的和M-ary的操作。多零神经网络是由N个神经元组成的反馈人工神经系统。每个神经元是一个非线性放大器,其输入输出响应函数等于一个包含2M+1个实零的多项式函数。该非线性反馈系统的一个独特性质是,如果连接矩阵编程正确,任何n位模拟输入向量总是收敛到输出的n位m值数字向量。这个输出将被锁定在适当的位置(或者它可以被记忆),即使输入被删除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A floating-gate-MOS-based multiple-valued associative memory On the implementation of set-valued non-Boolean switching functions A transformation of multiple-valued input two-valued output functions and its application to simplification of exclusive-or sum-of-products expressions A formal semantical approach to fuzzy logic Fundamental properties of Kleene-Stone logic functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1