{"title":"A Unified Control Framework for High-Dynamic Motions of Biped Robots","authors":"Chencheng Dong, Xuechao Chen, Zhangguo Yu, Yuanxi Zhang, Huanzhong Chen, Qingqing Li, Qiang Huang","doi":"10.1109/ICARM52023.2021.9536066","DOIUrl":null,"url":null,"abstract":"To give the biped robots a faster locomotion and better obstacle passing performance, high-dynamic motions are important. However, the instabilities and the huge impact result from the high-dynamic motions are remained challenges for the control. In this paper, a complete control framework is proposed, unifying all the controllers by the essential idea of contact force and torque control. The control framework is divided into two phases: The support phase control, which including the posture controller, the zero-moment-point controller and the threshold-added-torso-position-compliance controller; The flying phase control, which including the swing leg controller and the step position controller. To obtain a better performance for the contact force and torque control, a novel contact torque controller and a collision absorbing controller are proposed. The control framework is validated with experiments of the biped robot BHR-T performing running and jumping motions.","PeriodicalId":367307,"journal":{"name":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARM52023.2021.9536066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
To give the biped robots a faster locomotion and better obstacle passing performance, high-dynamic motions are important. However, the instabilities and the huge impact result from the high-dynamic motions are remained challenges for the control. In this paper, a complete control framework is proposed, unifying all the controllers by the essential idea of contact force and torque control. The control framework is divided into two phases: The support phase control, which including the posture controller, the zero-moment-point controller and the threshold-added-torso-position-compliance controller; The flying phase control, which including the swing leg controller and the step position controller. To obtain a better performance for the contact force and torque control, a novel contact torque controller and a collision absorbing controller are proposed. The control framework is validated with experiments of the biped robot BHR-T performing running and jumping motions.